Almost optimal explicit Johnson-Lindenstrauss families

被引:0
|
作者
Harvard University, Cambridge, MA, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Communication complexity - Design and analysis of algorithms - Dimensional vectors - Embedding dimensions - Explicit constructions - Johnson Lindenstrauss - Johnson-Lindenstrauss lemmata - Minimizing the number of
引用
收藏
相关论文
共 50 条
  • [31] Differential Private POI Queries via Johnson-Lindenstrauss Transform
    Yang, Mengmeng
    Zhu, Tianqing
    Liu, Bo
    Xiang, Yang
    Zhou, Wanlei
    IEEE ACCESS, 2018, 6 : 29685 - 29699
  • [32] Privacy Preserving Collaborative Filtering via the Johnson-Lindenstrauss Transform
    Yang, Mengmeng
    Zhu, Tianqing
    Ma, Lichuan
    Xiang, Yang
    Zhou, Wanlei
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS / 11TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING / 14TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS, 2017, : 417 - 424
  • [33] Practical Johnson-Lindenstrauss Transforms via Algebraic Geometry Codes
    You, Lin
    Knoll, Fiona
    Mao, Yue
    Gao, Shuhong
    2017 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2017, : 171 - 176
  • [34] Extremely Sparse Johnson-Lindenstrauss Transform: From Theory to Algorithm
    Yin, Rong
    Liu, Yong
    Wang, Weiping
    Meng, Dan
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1376 - 1381
  • [35] Fast Johnson-Lindenstrauss Transform for Robust and Secure Image Hashing
    Lv, Xudong
    Wang, Z. Jane
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 729 - 733
  • [36] Accelerating Feature Based Registration Using the Johnson-Lindenstrauss Lemma
    Akselrod-Ballin, Ayelet
    Bock, Davi
    Reid, R. Clay
    Warfield, Simon K.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT I, PROCEEDINGS, 2009, 5761 : 632 - +
  • [37] On Fast Johnson-Lindenstrauss Embeddings of Compact Submanifolds of RN with Boundary
    Iwen, Mark A.
    Schmidt, Benjamin
    Tavakoli, Arman
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (02) : 498 - 555
  • [38] Dimension reduction for data streams based on Johnson-Lindenstrauss transform
    Yang, Jing
    Zhao, Jia-Shi
    Zhang, Jian-Pei
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2013, 43 (06): : 1626 - 1630
  • [39] NEW AND IMPROVED JOHNSON-LINDENSTRAUSS EMBEDDINGS VIA THE RESTRICTED ISOMETRY PROPERTY
    Krahmer, Felix
    Ward, Rachel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1269 - 1281
  • [40] Clustering and Classification to Evaluate Data Reduction via Johnson-Lindenstrauss Transform
    Ghalib, Abdulaziz
    Jessup, Tyler D.
    Johnson, Julia
    Monemian, Seyedamin
    ADVANCES IN INFORMATION AND COMMUNICATION, VOL 2, 2020, 1130 : 190 - 209