Almost optimal explicit Johnson-Lindenstrauss families

被引:0
|
作者
Harvard University, Cambridge, MA, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Communication complexity - Design and analysis of algorithms - Dimensional vectors - Embedding dimensions - Explicit constructions - Johnson Lindenstrauss - Johnson-Lindenstrauss lemmata - Minimizing the number of
引用
收藏
相关论文
共 50 条
  • [1] An Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform
    Ailon, Nir
    Liberty, Edo
    ACM TRANSACTIONS ON ALGORITHMS, 2013, 9 (03)
  • [2] An Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform
    Ailon, Nir
    Liberty, Edo
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 185 - 191
  • [3] Optimal Bounds for Johnson-Lindenstrauss Transformations
    Burr, Michael
    Gao, Shuhong
    Knoll, Fiona
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [4] The Johnson-Lindenstrauss Lemma Almost Characterizes Hilbert Space, But Not Quite
    Johnson, William B.
    Naor, Assaf
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (03) : 542 - 553
  • [5] The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite
    Johnson, William B.
    Naor, Assaf
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 885 - +
  • [6] On variants of the Johnson-Lindenstrauss lemma
    Matousek, Jiri
    RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (02) : 142 - 156
  • [7] Optimality of the Johnson-Lindenstrauss lemma
    Larsen, Kasper Green
    Nelson, Jelani
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 633 - 638
  • [8] Sparser Johnson-Lindenstrauss Transforms
    Kane, Daniel M.
    Nelson, Jelani
    JOURNAL OF THE ACM, 2014, 61 (01)
  • [9] A Sparse Johnson-Lindenstrauss Transform
    Dasgupta, Anirban
    Kumar, Ravi
    Sarlos, Tamas
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 341 - 350
  • [10] JOHNSON-LINDENSTRAUSS EMBEDDINGS WITH KRONECKER STRUCTURE
    Bamberger, Stefan
    Krahmer, Felix
    Ward, Rachel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (04) : 1806 - 1850