Bi-Hamiltonian structures of WDVV-type

被引:0
|
作者
Opanasenko, S. [1 ,2 ]
Vitolo, R. [1 ,3 ]
机构
[1] Sez INFN Lecce, Via Arnesano, I-73100 Lecce, Italy
[2] NAS Ukraine, Inst Math, 3 Tereshchenkivska St, UA-01024 Kyiv, Ukraine
[3] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Italy
关键词
WDVV equations; Hamiltonian PDEs; integrable systems; CONSERVATION-LAWS; ASSOCIATIVITY EQUATIONS; LINEAR CONGRUENCES; POISSON BRACKETS; SYSTEMS;
D O I
10.1098/rspa.2024.0249
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of nonlinear partial differential equations (PDEs) that admit the same bi-Hamiltonian structure as the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations: a Ferapontov-type first-order Hamiltonian operator and a homogeneous third-order Hamiltonian operator in a canonical Doyle-Pot & euml;min form, which are compatible. Using various equivalence groups, we classify such equations in two-component and three-component cases. In a four-component case we add further evidence to the conjecture that there exists only one integrable system of the above type. Finally, we give an example of the six-component system with required bi-Hamiltonian structure. To streamline the symbolic computation, we develop an algorithm to find the aforementioned Hamiltonian operators, which includes putting forward a conjecture on the structure of the metric parameterizing the first-order Hamiltonian operator.
引用
收藏
页数:21
相关论文
共 50 条