Bi-Hamiltonian structures of WDVV-type

被引:0
|
作者
Opanasenko, S. [1 ,2 ]
Vitolo, R. [1 ,3 ]
机构
[1] Sez INFN Lecce, Via Arnesano, I-73100 Lecce, Italy
[2] NAS Ukraine, Inst Math, 3 Tereshchenkivska St, UA-01024 Kyiv, Ukraine
[3] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Italy
关键词
WDVV equations; Hamiltonian PDEs; integrable systems; CONSERVATION-LAWS; ASSOCIATIVITY EQUATIONS; LINEAR CONGRUENCES; POISSON BRACKETS; SYSTEMS;
D O I
10.1098/rspa.2024.0249
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of nonlinear partial differential equations (PDEs) that admit the same bi-Hamiltonian structure as the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations: a Ferapontov-type first-order Hamiltonian operator and a homogeneous third-order Hamiltonian operator in a canonical Doyle-Pot & euml;min form, which are compatible. Using various equivalence groups, we classify such equations in two-component and three-component cases. In a four-component case we add further evidence to the conjecture that there exists only one integrable system of the above type. Finally, we give an example of the six-component system with required bi-Hamiltonian structure. To streamline the symbolic computation, we develop an algorithm to find the aforementioned Hamiltonian operators, which includes putting forward a conjecture on the structure of the metric parameterizing the first-order Hamiltonian operator.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Flat Bi-Hamiltonian Structures and Invariant Densities
    Anton Izosimov
    Letters in Mathematical Physics, 2016, 106 : 1415 - 1427
  • [22] CONSTRAINED KP HIERARCHY AND BI-HAMILTONIAN STRUCTURES
    OEVEL, W
    STRAMPP, W
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (01) : 51 - 81
  • [23] Bi-Hamiltonian structures and singularities of integrable systems
    Bolsinov, A. V.
    Oshemkov, A. A.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (4-5): : 431 - 454
  • [24] Generalized Heisenberg equations and bi-Hamiltonian structures
    Li, Yihao
    Jia, Minxin
    Wei, Jiao
    APPLIED MATHEMATICS LETTERS, 2024, 151
  • [25] A GENERALIZATION OF TODA LATTICES AND THEIR BI-HAMILTONIAN STRUCTURES
    Geng, Xianguo
    Li, Fang
    Xue, Bo
    MODERN PHYSICS LETTERS B, 2012, 26 (13):
  • [26] Flat Bi-Hamiltonian Structures and Invariant Densities
    Izosimov, Anton
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (10) : 1415 - 1427
  • [27] Invariant Foliations of Nondegenerate Bi-Hamiltonian Structures
    Kozlov I.K.
    Journal of Mathematical Sciences, 2017, 225 (4) : 596 - 610
  • [28] Integrable bi-Hamiltonian systems of hydrodynamic type
    Mikhov, OI
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 153 - 154
  • [29] Bi-Hamiltonian structures of KdV type, cyclic Frobenius algebrae and Monge metrics
    Lorenzoni, Paolo
    Vitolo, Raffaele
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (48)
  • [30] On the bi-hamiltonian structures for the Goryachev-Chaplygin top
    Kostko, A. L.
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (01): : 38 - 45