Bi-Hamiltonian structures of WDVV-type

被引:0
|
作者
Opanasenko, S. [1 ,2 ]
Vitolo, R. [1 ,3 ]
机构
[1] Sez INFN Lecce, Via Arnesano, I-73100 Lecce, Italy
[2] NAS Ukraine, Inst Math, 3 Tereshchenkivska St, UA-01024 Kyiv, Ukraine
[3] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Italy
关键词
WDVV equations; Hamiltonian PDEs; integrable systems; CONSERVATION-LAWS; ASSOCIATIVITY EQUATIONS; LINEAR CONGRUENCES; POISSON BRACKETS; SYSTEMS;
D O I
10.1098/rspa.2024.0249
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of nonlinear partial differential equations (PDEs) that admit the same bi-Hamiltonian structure as the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations: a Ferapontov-type first-order Hamiltonian operator and a homogeneous third-order Hamiltonian operator in a canonical Doyle-Pot & euml;min form, which are compatible. Using various equivalence groups, we classify such equations in two-component and three-component cases. In a four-component case we add further evidence to the conjecture that there exists only one integrable system of the above type. Finally, we give an example of the six-component system with required bi-Hamiltonian structure. To streamline the symbolic computation, we develop an algorithm to find the aforementioned Hamiltonian operators, which includes putting forward a conjecture on the structure of the metric parameterizing the first-order Hamiltonian operator.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Alternative bi-Hamiltonian structures for WDVV equations of associativity
    Kalayci, J
    Nutku, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 723 - 734
  • [2] Alternative bi-Hamiltonian structures for WDVV equations of associativity
    Kalayci, J.
    Nutku, Y.
    Journal of Physics A: Mathematical and General, 31 (02):
  • [3] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163
  • [4] On the Bi-Hamiltonian Geometry of WDVV Equations
    Maxim V. Pavlov
    Raffaele F. Vitolo
    Letters in Mathematical Physics, 2015, 105 : 1135 - 1163
  • [5] WDVV equations and invariant bi-Hamiltonian formalism
    Vasicek, J.
    Vitolo, R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [6] WDVV equations and invariant bi-Hamiltonian formalism
    J. Vašíček
    R. Vitolo
    Journal of High Energy Physics, 2021
  • [7] Bi-Hamiltonian structures of KdV type
    Lorenzoni, P.
    Savoldi, A.
    Vitolo, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (04)
  • [8] ON BI-HAMILTONIAN STRUCTURES
    FRAUENDIENER, J
    NEWMAN, ET
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) : 331 - 337
  • [9] Degenerate bi-Hamiltonian structures of the hydrodynamic type
    Strachan, IAB
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 122 (02) : 247 - 255
  • [10] Degenerate bi-Hamiltonian structures of the hydrodynamic type
    I. A. B. Strachan
    Theoretical and Mathematical Physics, 2000, 122 : 247 - 255