Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks

被引:2
|
作者
Xu, Chunmei [1 ,2 ]
Zhang, Cheng [1 ,3 ]
Huang, Yongming [3 ]
Niyato, Dusit [4 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Univ Surrey, Inst Commun Syst, 5GIC & 6GIC, Guildford GU2 7XH, England
[3] Purple Mt Labs, Nanjing 211111, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 21期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Aggregates; Array signal processing; Wireless networks; Performance evaluation; Computational modeling; Atmospheric modeling; Training; Aggregate beamforming; Air Computation (AirComp); device selection; federated learning (FL); large-scale network;
D O I
10.1109/JIOT.2024.3360190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, there is a growing trend in deploying ubiquitous artificial intelligence (AI) applications at the network edge. As a promising framework that enables secure edge intelligence, federated learning (FL) has been paid attention, where the over-the-air computing technique has been adopted to enhance the communication efficiency. In this study, we focus on over-the-air FL over a large-scale network with numerous edge devices. Joint device selection and aggregate beamforming design is investigated under two different objectives, i.e., minimizing the aggregate error and maximizing the number of selected devices. Two combinatorial problems are formulated, which are demanding to solve especially in the large-scale network. To reduce the computational complexity, a random aggregate beamforming scheme is proposed, which employs random sampling instead of optimization to determine the aggregator beamforming vector. Notably, the implementation of the proposed scheme does not necessitate the full channel estimation. Asymptotic analysis reveals that the aggregate error asymptotically follows a Gaussian distribution, and the number of selected devices approximates a symmetrical distribution. The distribution parameters are explicitly expressed by the transmit power, the numbers of devices and selected devices. Simulation results confirm the theoretical analysis and demonstrate the effectiveness of the proposed random aggregate beamforming scheme.
引用
收藏
页码:34325 / 34336
页数:12
相关论文
共 50 条
  • [41] Cloud-RAN Over-the-Air Federated Learning
    Ma, Haoming
    Yuan, Xiaojun
    Ding, Zhi
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4257 - 4262
  • [42] Boosting Fairness and Robustness in Over-the-Air Federated Learning
    Oeksuez, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 682 - 687
  • [43] Over-the-Air Federated Learning with Energy Harvesting Devices
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1942 - 1947
  • [44] Federated Edge Learning with Misaligned Over-The-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2021, : 236 - 240
  • [45] In-Network Computation for Large-Scale Federated Learning Over Wireless Edge Networks
    Dinh, Thinh Quang
    Nguyen, Diep N.
    Hoang, Dinh Thai
    Pham, Tran Vu
    Dutkiewicz, Eryk
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 5918 - 5932
  • [46] CHARLES: Channel-Quality-Adaptive Over-the-Air Federated Learning over Wireless Networks
    Mao, Jiayu
    Yang, Haibo
    Qiu, Peiwen
    Liu, Jia
    Yener, Aylin
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [47] Deep Reinforcement Learning for Over-the-Air Federated Learning in SWIPT-Enabled IoT Networks
    Zhang, Xinran
    Tian, Hui
    Ni, Wanli
    Sun, Mengying
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [48] Interference Management for Over-the-Air Federated Learning in Multi-Cell Wireless Networks
    Wang, Zhibin
    Zhou, Yong
    Shi, Yuanming
    Zhuang, Weihua
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (08) : 2361 - 2377
  • [49] Over-the-Air Federated Learning in User-Centric Cell-Free Networks
    Cui, Yingping
    Lv, Tiejun
    Li, Weicai
    Ni, Wei
    Hossain, Ekram
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3683 - 3687
  • [50] RIS-Assisted Over-the-Air Federated Learning in Millimeter Wave MIMO Networks
    Hu L.
    Wang Z.B.
    Zhu H.B.
    Zhou Y.
    Journal of Communications and Information Networks, 2022, 7 (02) : 145 - 156