Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks

被引:2
|
作者
Xu, Chunmei [1 ,2 ]
Zhang, Cheng [1 ,3 ]
Huang, Yongming [3 ]
Niyato, Dusit [4 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Univ Surrey, Inst Commun Syst, 5GIC & 6GIC, Guildford GU2 7XH, England
[3] Purple Mt Labs, Nanjing 211111, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 21期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Aggregates; Array signal processing; Wireless networks; Performance evaluation; Computational modeling; Atmospheric modeling; Training; Aggregate beamforming; Air Computation (AirComp); device selection; federated learning (FL); large-scale network;
D O I
10.1109/JIOT.2024.3360190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, there is a growing trend in deploying ubiquitous artificial intelligence (AI) applications at the network edge. As a promising framework that enables secure edge intelligence, federated learning (FL) has been paid attention, where the over-the-air computing technique has been adopted to enhance the communication efficiency. In this study, we focus on over-the-air FL over a large-scale network with numerous edge devices. Joint device selection and aggregate beamforming design is investigated under two different objectives, i.e., minimizing the aggregate error and maximizing the number of selected devices. Two combinatorial problems are formulated, which are demanding to solve especially in the large-scale network. To reduce the computational complexity, a random aggregate beamforming scheme is proposed, which employs random sampling instead of optimization to determine the aggregator beamforming vector. Notably, the implementation of the proposed scheme does not necessitate the full channel estimation. Asymptotic analysis reveals that the aggregate error asymptotically follows a Gaussian distribution, and the number of selected devices approximates a symmetrical distribution. The distribution parameters are explicitly expressed by the transmit power, the numbers of devices and selected devices. Simulation results confirm the theoretical analysis and demonstrate the effectiveness of the proposed random aggregate beamforming scheme.
引用
收藏
页码:34325 / 34336
页数:12
相关论文
共 50 条
  • [21] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [22] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [23] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [24] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [25] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [26] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi, Seyed Mohammad
    Fodor, Viktoria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8480 - 8496
  • [27] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [28] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793
  • [29] Joint Antenna Selection and Beamforming for Massive MIMO-Enabled Over-the-Air Federated Learning
    Asaad, Saba
    Tabassum, Hina
    Ouyang, Chongjun
    Wang, Ping
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8603 - 8618
  • [30] Asynchronous Federated Learning via Over-the-Air Computation in LEO Satellite Networks
    Huang, Yansong
    Li, Xuan
    Zhao, Moke
    Li, Haiyan
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19885 - 19901