Reconstruction of reservoir rock using attention-based convolutional recurrent neural network

被引:0
|
作者
Kumar, Indrajeet [1 ]
Singh, Anugrah [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Chem Engn, Gauhati 781039, Assam, India
来源
关键词
Machine learning; ACRNN; Digital rock reconstruction; Reservoir rock;
D O I
10.1016/j.acags.2024.100202
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or xray microcomputer tomography. While x-ray micro-computed tomography gives us three-dimensional images of the porous media, it is often impossible to quantify the variability of the pore, grains, structure, and orientation experimentally. Recently, machine learning has successfully demonstrated the reconstruction ability of reservoir rock images or any porous media. These reservoir rock images are crucial for the digital characterization of the reservoir. We propose a novel algorithm consisting of the convolutional neural network, an attention mechanism, and a recurrent neural network for the reconstruction of reservoir rock or porous media images. The attentionbased convolutional recurrent neural network (ACRNN) can reconstruct a representative sample of reservoir rocks. The reconstructed image quality was checked by comparing them with the original Parker sandstone, Leopard sandstone, carbonate shale, Berea sandstone, and sandy medium images. We evaluated the reconstruction by measuring pore and throat properties, two-point probability function, and structural similarity index. Results show that ACRNN can reconstruct reservoir rock or porous media of different scales with approximately the same geometrical, statistical, and topological parameters of the reservoir rock images. This deep learning method is computationally efficient, fast, and reliable for synthetic image realizations. The model was trained and validated on real images, and the reconstructed images showed excellent concordance with the real images having almost the same pore and grain structures. The deep learning-based digital rock reconstruction of reservoir rock or porous media images can aid in rapid image generation to better understand reservoir rock or subsurface formation.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Cascade Dynamics Modeling with Attention-based Recurrent Neural Network
    Wang, Yongqing
    Shen, Huawei
    Liu, Shenghua
    Gao, Jinhua
    Cheng, Xueqi
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2985 - 2991
  • [42] Attention-Based Recurrent Neural Network for Plant Disease Classification
    Lee, Sue Han
    Goeau, Herve
    Bonnet, Pierre
    Joly, Alexis
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [43] Attention-based Recurrent Neural Network for Traffic Flow Prediction
    Chen, Qi
    Wang, Wei
    Huang, Xin
    Liang, Hai-ning
    JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (03): : 831 - 839
  • [44] Attention-Based Hierarchical Recurrent Neural Network for Phenotype Classification
    Xu, Nan
    Shen, Yanyan
    Zhu, Yanmin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 465 - 476
  • [45] Attention-based 3D convolutional recurrent neural network model for multimodal emotion recognition
    Du, Yiming
    Li, Penghai
    Cheng, Longlong
    Zhang, Xuanwei
    Li, Mingji
    Li, Fengzhou
    FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [46] Automated skin lesion segmentation using attention-based deep convolutional neural network
    Arora, Ridhi
    Raman, Balasubramanian
    Nayyar, Kritagya
    Awasthi, Ruchi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 65
  • [47] Attention-Based Temporal Weighted Convolutional Neural Network for Action Recognition
    Zang, Jinliang
    Wang, Le
    Liu, Ziyi
    Zhang, Qilin
    Niu, Zhenxing
    Hua, Gang
    Zheng, Nanning
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 519 : 97 - 108
  • [48] Attention-based Convolutional Neural Network for Computer Vision Color Constancy
    Koscevic, Karlo
    Subasic, Marko
    Loncaric, Sven
    PROCEEDINGS OF THE 2019 11TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2019), 2019, : 372 - 377
  • [49] An Attention-Based Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification
    Ullah, Muhammad Zakir
    Zheng, Yuanjie
    Song, Jingqi
    Aslam, Sehrish
    Xu, Chenxi
    Kiazolu, Gogo Dauda
    Wang, Liping
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [50] Event-based video reconstruction via attention-based recurrent network
    Ma, Wenwen
    Ma, Shanxing
    Meiresone, Pieter
    Allebosch, Gianni
    Philips, Wilfried
    Aelterman, Jan
    NEUROCOMPUTING, 2025, 632