Reconstruction of reservoir rock using attention-based convolutional recurrent neural network

被引:0
|
作者
Kumar, Indrajeet [1 ]
Singh, Anugrah [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Chem Engn, Gauhati 781039, Assam, India
来源
关键词
Machine learning; ACRNN; Digital rock reconstruction; Reservoir rock;
D O I
10.1016/j.acags.2024.100202
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or xray microcomputer tomography. While x-ray micro-computed tomography gives us three-dimensional images of the porous media, it is often impossible to quantify the variability of the pore, grains, structure, and orientation experimentally. Recently, machine learning has successfully demonstrated the reconstruction ability of reservoir rock images or any porous media. These reservoir rock images are crucial for the digital characterization of the reservoir. We propose a novel algorithm consisting of the convolutional neural network, an attention mechanism, and a recurrent neural network for the reconstruction of reservoir rock or porous media images. The attentionbased convolutional recurrent neural network (ACRNN) can reconstruct a representative sample of reservoir rocks. The reconstructed image quality was checked by comparing them with the original Parker sandstone, Leopard sandstone, carbonate shale, Berea sandstone, and sandy medium images. We evaluated the reconstruction by measuring pore and throat properties, two-point probability function, and structural similarity index. Results show that ACRNN can reconstruct reservoir rock or porous media of different scales with approximately the same geometrical, statistical, and topological parameters of the reservoir rock images. This deep learning method is computationally efficient, fast, and reliable for synthetic image realizations. The model was trained and validated on real images, and the reconstructed images showed excellent concordance with the real images having almost the same pore and grain structures. The deep learning-based digital rock reconstruction of reservoir rock or porous media images can aid in rapid image generation to better understand reservoir rock or subsurface formation.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network
    Wang, Zichen
    Zhang, Xinyu
    Fu, Rong
    Wang, Di
    Chen, Xiaoyan
    Wang, Huaxiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [12] A Sentence Summarizer using Recurrent Neural Network and Attention-Based Encoder
    Kuremoto, Takashi
    Tsuruda, Takuji
    Mabu, Shingo
    Obayashi, Masanao
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2017), 2017, 153 : 245 - 248
  • [13] An Attention-based Recurrent Convolutional Network for Vehicle Taillight Recognition
    Lee, Kuan-Hui
    Tagawa, Takaaki
    Pan, Jia-En M.
    Gaidon, Adrien
    Douillard, Bertrand
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2365 - 2370
  • [14] Attention-Based Recurrent Neural Network for Multicriteria Recommendations
    Bougteb, Yahya
    Frikh, Bouchra
    Ouhbi, Brahim
    Zemmouri, El Moukhtar
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 264 - 274
  • [15] Attention-based Recurrent Neural Network for Location Recommendation
    Xia, Bin
    Li, Yun
    Li, Qianmu
    Li, Tao
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [16] Attention-Based Recurrent Neural Network for Sequence Labeling
    Li, Bofang
    Liu, Tao
    Zhao, Zhe
    Du, Xiaoyong
    WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 340 - 348
  • [17] EEG emotion recognition using attention-based convolutional transformer neural network
    Gong, Linlin
    Li, Mingyang
    Zhang, Tao
    Chen, Wanzhong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [18] Ascertaining Speech Emotion using Attention-based Convolutional Neural Network Framework
    Arya, Ashima
    Arya, Vaishali
    Kohli, Neha
    Sukhija, Namrata
    Ibrahim, Ashraf Osman
    Bharany, Salil
    Binzagr, Faisal
    Muchtar, Farkhana Binti
    Mamoun, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 614 - 622
  • [19] Residential Appliance Detection Using Attention-based Deep Convolutional Neural Network
    Deng, Chunyu
    Wu, Kehe
    Wang, Binbin
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (02): : 621 - 633
  • [20] Handwritten/Printed Receipt Classification using Attention-Based Convolutional Neural Network
    Yang, Fan
    Jin, Lianwen
    Yang, Weixin
    Feng, Ziyong
    Zhang, Shuye
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 384 - 389