Bisimulations for intuitionistic temporal logics

被引:0
|
作者
Balbiani, Philippe [1 ]
Boudou, Joseph [1 ]
Diéguez, Martín [2 ]
Fernández-Duque, David [3 ]
机构
[1] IRIT, Toulouse University, Toulouse, France
[2] LERIA, Université d’Angers, Angers, France
[3] Department of Mathematics WE16, Ghent University, Ghent, Belgium
来源
Journal of Applied Logics | 2021年 / 8卷 / 08期
关键词
Fault tolerance - Computer circuits;
D O I
暂无
中图分类号
TP33 [电子数字计算机(不连续作用电子计算机)];
学科分类号
081201 ;
摘要
We introduce bisimulations for the logic ITLe with ◯ (‘next’), U (‘until’) and R (‘release’), an intuitionistic temporal logic based on structures (W, ≼, S), where ≼ is used to interpret intuitionistic implication and S is a ≼-monotone function used to interpret the temporal modalities. Our main results are that (‘eventually’), which is definable in terms of U, cannot be defined in terms of ◯ and ◻, and similarly that ◻ (‘henceforth’), definable in terms of R, cannot be defined in terms of ◯ and U, even over the smaller class of here-and-there models. © 2021, College Publications. All rights reserved.
引用
收藏
页码:2265 / 2285
相关论文
共 50 条
  • [31] Intuitionistic Implication and Logics of Formal Inconsistency
    Ciuciura, Janusz
    AXIOMS, 2024, 13 (11)
  • [32] Around Classical and Intuitionistic Linear Logics
    Laurent, Olivier
    LICS'18: PROCEEDINGS OF THE 33RD ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, 2018, : 629 - 638
  • [33] Local Intuitionistic Modal Logics and Their Calculi
    Balbiani, Philippe
    Gao, Han
    Gencer, Cigdem
    Olivetti, Nicola
    AUTOMATED REASONING, IJCAR 2024, PT II, 2024, 14740 : 78 - 96
  • [34] Properties of intuitionistic provability and preservativity logics
    Iemhoff, Rosalie
    De Jongh, Dick
    Zhou, Chunlai
    LOGIC JOURNAL OF THE IGPL, 2005, 13 (06) : 615 - 636
  • [35] Normal Companions of Intuitionistic Modal Logics
    Drobyshevich, S. A.
    ALGEBRA AND LOGIC, 2023, 61 (06) : 445 - 465
  • [36] Merging Intuitionistic and De Morgan Logics
    Ma, Minghui
    Guo, Juntong
    MATHEMATICS, 2024, 12 (01)
  • [37] On Some Semi-Intuitionistic Logics
    Juan M. Cornejo
    Ignacio D. Viglizzo
    Studia Logica, 2015, 103 : 303 - 344
  • [38] On the unification of classical, intuitionistic and affine logics
    Liang, Chuck
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2019, 29 (08) : 1177 - 1216
  • [39] On game semantics of the affine and intuitionistic logics
    Mezhirov, Ilya
    Vereshchagin, Nikolay
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2008, 5110 : 28 - +
  • [40] Semantically closed intuitionistic abstract logics
    Lewitzka, Steffen
    JOURNAL OF LOGIC AND COMPUTATION, 2012, 22 (03) : 351 - 374