On Some Semi-Intuitionistic Logics

被引:0
|
作者
Juan M. Cornejo
Ignacio D. Viglizzo
机构
[1] Universidad Nacional del Sur and CONICET,Departamento de Matemática
来源
Studia Logica | 2015年 / 103卷
关键词
Semi-intuitionistic logic; Semi-Heyting algebras; Intuitionistic logic; Heyting algebras;
D O I
暂无
中图分类号
学科分类号
摘要
Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics.
引用
收藏
页码:303 / 344
页数:41
相关论文
共 50 条
  • [1] On Some Semi-Intuitionistic Logics
    Cornejo, Juan M.
    Viglizzo, Ignacio D.
    STUDIA LOGICA, 2015, 103 (02) : 303 - 344
  • [2] Semi-intuitionistic Logic
    Juan Manuel Cornejo
    Studia Logica, 2011, 98 : 9 - 25
  • [3] Semi-intuitionistic Logic
    Manuel Cornejo, Juan
    STUDIA LOGICA, 2011, 98 (1-2) : 9 - 25
  • [4] SEMI-INTUITIONISTIC SET THEORY
    POZSGAY, LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 253 - &
  • [5] Semi-intuitionistic Logic with Strong Negation
    Manuel Cornejo, Juan
    Viglizzo, Ignacio
    STUDIA LOGICA, 2018, 106 (02) : 281 - 293
  • [6] Semi-intuitionistic Logic with Strong Negation
    Juan Manuel Cornejo
    Ignacio Viglizzo
    Studia Logica, 2018, 106 : 281 - 293
  • [8] Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic
    Castano, Diego
    Manuel Cornejo, Juan
    STUDIA LOGICA, 2016, 104 (06) : 1245 - 1265
  • [9] Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic
    Diego Castaño
    Juan Manuel Cornejo
    Studia Logica, 2016, 104 : 1245 - 1265
  • [10] The scope of Feferman's semi-intuitionistic set theories and his second conjecture
    Rathjen, Michael
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (03): : 500 - 525