Heterogeneous graph convolutional network for multi-view semi-supervised classification

被引:6
|
作者
Wang, Shiping [1 ]
Huang, Sujia [1 ]
Wu, Zhihao [1 ]
Liu, Rui [2 ]
Chen, Yong [3 ]
Zhang, Dell [4 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
[2] Beihang Univ, Sch Comp Sci, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100871, Peoples R China
[4] Thomson Reuters Labs, London E14 5EP, England
基金
中国国家自然科学基金;
关键词
Graph convolutional network; Heterogeneous graph; Multi-view learning; Semi-supervised classification; Learnable graph structure; FEATURE FUSION; REGRESSION;
D O I
10.1016/j.neunet.2024.106438
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel approach to semantic representation learning from multi-view datasets, distinct from most existing methodologies which typically handle single-view data individually, maintaining a shared semantic link across the multi-view data via a unified optimization process. Notably, even recent advancements, such as Co-GCN, continue to treat each view as an independent graph, subsequently aggregating the respective GCN representations to form output representations, which ignores the complex semantic interactions among heterogeneous data. To address the issue, we design a unified framework to connect multi-view data with heterogeneous graphs. Specifically, our study envisions multi-view data as a heterogeneous graph composed of shared isomorphic nodes and multi-type edges, wherein the same nodes are shared across different views, but each specific view possesses its own unique edge type. This perspective motivates us to utilize the heterogeneous graph convolutional network (HGCN) to extract semantic representations from multi-view data for semi-supervised classification tasks. To the best of our knowledge, this is an early attempt to transfigure multi-view data into a heterogeneous graph within the realm of multi-view semi-supervised learning. In our approach, the original input of the HGCN is composed of concatenated multi-view matrices, and its convolutional operator (the graph Laplacian matrix) is adaptively learned from multi-type edges in a data- driven fashion. After rigorous experimentation on eight public datasets, our proposed method, hereafter referred to as HGCN-MVSC, demonstrated encouraging superiority over several state-of-the-art competitors for semi-supervised classification tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Multi-view HAC for semi-supervised document image classification
    Carmagnac, F
    Héroux, P
    Trupin, E
    DOCUMENT ANALYSIS SYSTEMS VI, PROCEEDINGS, 2004, 3163 : 191 - 200
  • [32] Adaptive collaborative fusion for multi-view semi-supervised classification
    Jiang, Bingbing
    Zhang, Chenglong
    Zhong, Yan
    Liu, Yi
    Zhang, Yingwei
    Wu, Xingyu
    Sheng, Weiguo
    INFORMATION FUSION, 2023, 96 : 37 - 50
  • [33] Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours
    Nie, Feiping
    Cai, Guohao
    Li, Xuelong
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2408 - 2414
  • [34] Joint consensus and diversity for multi-view semi-supervised classification
    Wenzhang Zhuge
    Chenping Hou
    Shaoliang Peng
    Dongyun Yi
    Machine Learning, 2020, 109 : 445 - 465
  • [35] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [36] Semi-Supervised Learning for Multi-View Data Classification and Visualization
    Ziraki, Najmeh
    Bosaghzadeh, Alireza
    Dornaika, Fadi
    INFORMATION, 2024, 15 (07)
  • [37] Seeded random walk for multi-view semi-supervised classification
    Wang, Shiping
    Wang, Zhewen
    Lim, Kart-Leong
    Xiao, Guobao
    Guo, Wenzhong
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [38] Joint consensus and diversity for multi-view semi-supervised classification
    Zhuge, Wenzhang
    Hou, Chenping
    Peng, Shaoliang
    Yi, Dongyun
    MACHINE LEARNING, 2020, 109 (03) : 445 - 465
  • [39] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [40] Accelerated manifold embedding for multi-view semi-supervised classification
    Wang, Shiping
    Wang, Zhewen
    Guo, Wenzhong
    INFORMATION SCIENCES, 2021, 562 (562) : 438 - 451