Entanglement and particle fluctuations of one-dimensional chiral topological insulators

被引:4
|
作者
Monkman K. [1 ]
Sirker J. [1 ]
机构
[1] Department of Physics and Astronomy, Manitoba Quantum Institute, University of Manitoba, Winnipeg
基金
加拿大自然科学与工程研究理事会;
关键词
26;
D O I
10.1103/PhysRevB.108.125116
中图分类号
学科分类号
摘要
We consider the topological protection of entanglement and particle fluctuations for a general one-dimensional chiral topological insulator with winding number I. We prove, in particular, that when the periodic system is divided spatially into two equal halves, the single-particle entanglement spectrum has 2|I| protected eigenvalues at 1/2. Therefore the number fluctuations are bounded from below by ΔN2≥|I|/2 and the entanglement entropy by S≥2|I|ln2. We note that our results are obtained by applying directly an index theorem to the microscopic model and do not rely on an equivalence to a continuum model or a bulk-boundary correspondence for a slowly varying boundary. © 2023 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [31] Perfect one-dimensional interface states in a twisted stack of three-dimensional topological insulators
    Fujimoto, Manato
    Kawakami, Takuto
    Koshino, Mikito
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [32] Fate of entanglement in one-dimensional fermion liquid with coherent particle loss
    Yi, Wei-Zhu
    Lin, Hao-Jie
    Lin, Ze-Xun
    Chen, Wei-Qiang
    arXiv, 2021,
  • [33] Quantum geometry and geometric entanglement entropy of one-dimensional Floquet topological matter
    Zhou, Longwen
    PHYSICAL REVIEW B, 2024, 110 (05)
  • [34] Universal Entanglement Spectrum in One-Dimensional Gapless Symmetry Protected Topological States
    Yu, Xue-Jia
    Yang, Sheng
    Lin, Hai-Qing
    Jian, Shao-Kai
    PHYSICAL REVIEW LETTERS, 2024, 133 (02)
  • [35] Finite-size scaling of entanglement entropy in one-dimensional topological models
    Wang, Yuting
    Gulden, Tobias
    Kamenev, Alex
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [36] Biexciton in one-dimensional Mott insulators
    T. Miyamoto
    T. Kakizaki
    T. Terashige
    D. Hata
    H. Yamakawa
    T. Morimoto
    N. Takamura
    H. Yada
    Y. Takahashi
    T. Hasegawa
    H. Matsuzaki
    T. Tohyama
    H. Okamoto
    Communications Physics, 2
  • [37] Excitons in one-dimensional Mott insulators
    Essler, FHL
    Gebhard, F
    Jeckelmann, E
    PHYSICAL REVIEW B, 2001, 64 (12)
  • [38] One-dimensional magnetic excitonic insulators
    Liu, Jing
    Qu, Hongwei
    Li, Yuanchang
    NEW JOURNAL OF PHYSICS, 2024, 26 (10):
  • [39] Biexciton in one-dimensional Mott insulators
    Miyamoto, T.
    Kakizaki, T.
    Terashige, T.
    Hata, D.
    Yamakawa, H.
    Morimoto, T.
    Takamura, N.
    Yada, H.
    Takahashi, Y.
    Hasegawa, T.
    Matsuzaki, H.
    Tohyama, T.
    Okamoto, H.
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [40] Topological Bose-Mott insulators in one-dimensional non-Hermitian superlattices
    Xu, Zhihao
    Chen, Shu
    PHYSICAL REVIEW B, 2020, 102 (03)