Entanglement and particle fluctuations of one-dimensional chiral topological insulators

被引:4
|
作者
Monkman K. [1 ]
Sirker J. [1 ]
机构
[1] Department of Physics and Astronomy, Manitoba Quantum Institute, University of Manitoba, Winnipeg
基金
加拿大自然科学与工程研究理事会;
关键词
26;
D O I
10.1103/PhysRevB.108.125116
中图分类号
学科分类号
摘要
We consider the topological protection of entanglement and particle fluctuations for a general one-dimensional chiral topological insulator with winding number I. We prove, in particular, that when the periodic system is divided spatially into two equal halves, the single-particle entanglement spectrum has 2|I| protected eigenvalues at 1/2. Therefore the number fluctuations are bounded from below by ΔN2≥|I|/2 and the entanglement entropy by S≥2|I|ln2. We note that our results are obtained by applying directly an index theorem to the microscopic model and do not rely on an equivalence to a continuum model or a bulk-boundary correspondence for a slowly varying boundary. © 2023 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [21] One-dimensional 2n-root topological insulators and superconductors
    Marques, A. M.
    Madail, L.
    Dias, R. G.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [22] Kibble-Zurek behavior in one-dimensional disordered topological insulators
    Sun, Zhoujian
    Deng, Menghua
    Li, Fuxiang
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [23] One-dimensional topologically protected modes in topological insulators with lattice dislocations
    Ran, Ying
    Zhang, Yi
    Vishwanath, Ashvin
    NATURE PHYSICS, 2009, 5 (04) : 298 - 303
  • [24] Electronic transport in one-dimensional Floquet topological insulators via topological and nontopological edge states
    Mueller, Niclas
    Kennes, Dante M.
    Klinovaja, Jelena
    Loss, Daniel
    Schoeller, Herbert
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [25] Bipartite charge fluctuations in one-dimensional Z2 superconductors and insulators
    Herviou, Loic
    Mora, Christophe
    Le Hur, Karyn
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [26] Non-diffracting states in one-dimensional Floquet photonic topological insulators
    Bellec, M.
    Michel, C.
    Zhang, H.
    Tzortzakis, S.
    Delplace, P.
    EPL, 2017, 119 (01)
  • [27] Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices
    Liu, Tao
    He, James Jun
    Yoshida, Tsuneya
    Xiang, Ze-Liang
    Nori, Franco
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [28] Long-range hopping and indexing assumption in one-dimensional topological insulators
    Dias, R. G.
    Marques, A. M.
    PHYSICAL REVIEW B, 2022, 105 (03)
  • [29] Fluctuations of the heat flux of a one-dimensional hard particle gas
    Brunet, E.
    Derrida, B.
    Gerschenfeld, A.
    EPL, 2010, 90 (02)
  • [30] Disentangling topological degeneracy in the entanglement spectrum of one-dimensional symmetry-protected topological phases
    Rao, Wen-Jia
    Zhang, Guang-Ming
    Yang, Kun
    PHYSICAL REVIEW B, 2014, 89 (12):