Entanglement and particle fluctuations of one-dimensional chiral topological insulators

被引:4
|
作者
Monkman K. [1 ]
Sirker J. [1 ]
机构
[1] Department of Physics and Astronomy, Manitoba Quantum Institute, University of Manitoba, Winnipeg
基金
加拿大自然科学与工程研究理事会;
关键词
26;
D O I
10.1103/PhysRevB.108.125116
中图分类号
学科分类号
摘要
We consider the topological protection of entanglement and particle fluctuations for a general one-dimensional chiral topological insulator with winding number I. We prove, in particular, that when the periodic system is divided spatially into two equal halves, the single-particle entanglement spectrum has 2|I| protected eigenvalues at 1/2. Therefore the number fluctuations are bounded from below by ΔN2≥|I|/2 and the entanglement entropy by S≥2|I|ln2. We note that our results are obtained by applying directly an index theorem to the microscopic model and do not rely on an equivalence to a continuum model or a bulk-boundary correspondence for a slowly varying boundary. © 2023 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [1] Chiral flow in one-dimensional Floquet topological insulators
    Liu, Xu
    Harper, Fenner
    Roy, Rahul
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [2] One-dimensional noninteracting topological insulators with chiral symmetry
    Matveeva, Polina
    Hewitt, Tyler
    Liu, Donghao
    Reddy, Kethan
    Gutman, Dmitri
    Carr, Sam T.
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [3] Chiral one-dimensional Floquet topological insulators beyond the rotating wave approximation
    Kennes, Dante M.
    Mueller, Niclas
    Pletyukhov, Mikhail
    Weber, Clara
    Bruder, Christoph
    Hassler, Fabian
    Klinovaja, Jelena
    Loss, Daniel
    Schoeller, Herbert
    PHYSICAL REVIEW B, 2019, 100 (04)
  • [4] Entanglement topological invariants for one-dimensional topological superconductors
    Fromholz, P.
    Magnifico, G.
    Vitale, V.
    Mendes-Santos, T.
    Dalmonte, M.
    PHYSICAL REVIEW B, 2020, 101 (08)
  • [5] Chiral metals and entrapped insulators in a one-dimensional topological non-Hermitian system
    Banerjee, Ayan
    Hegde, Suraj S.
    Agarwala, Adhip
    Narayan, Awadhesh
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [6] Relation of entanglement entropy and particle number fluctuations in one-dimensional Hubbard model
    Hoon Beom Kwon
    Min-Chul Cha
    Journal of the Korean Physical Society, 2023, 82 : 194 - 198
  • [7] Relation of entanglement entropy and particle number fluctuations in one-dimensional Hubbard model
    Kwon, Hoon Beom
    Cha, Min-Chul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (02) : 194 - 198
  • [8] A brief review on one-dimensional topological insulators and superconductors
    Huai-Ming Guo
    Science China Physics, Mechanics & Astronomy, 2016, 59
  • [9] A brief review on one-dimensional topological insulators and superconductors
    Huai-Ming Guo
    Science China(Physics,Mechanics & Astronomy), 2016, (03) : 101 - 109
  • [10] Haldane phase in one-dimensional topological Kondo insulators
    Mezio, Alejandro
    Lobos, Alejandro M.
    Dobry, Ariel O.
    Gazza, Claudio J.
    PHYSICAL REVIEW B, 2015, 92 (20)