Benefit segmentation using a ghsom modified for interactive learning

被引:0
|
作者
Sasaki K. [1 ]
Ochikubo S. [1 ]
Toriduka K. [1 ]
Luo X. [2 ]
Saitoh F. [3 ]
Ishizu S. [1 ]
机构
[1] Aoyama Gakuin University, Japan
[2] Waseda University, Japan
[3] Chiba Institute of Technology, Japan
来源
关键词
Benefit; Data Visualization; Market Segmentation; Self-organizing Map;
D O I
10.11221/jima.70.178
中图分类号
学科分类号
摘要
The Self-organizing Map (SOM) is one of the learning models widely used in market segmentation, and Growing Hierarchical SOM (GHSOM), which is a model extended to a hierarchical structure, is also used for the task. However, GHSOM cannot increase the map size due to the limitation of the number of data allocated to the underlying map. To aim for visual understanding of market data, we newly propose construction of a model through interacting with GHSOM analysts. In the analysis, we extract the newly defined indexes that show the customers behavior from the dataset as the feature vectors. Furthermore, market segments hidden in data set are visualized based on the method we propose. © 2019 Japan Industrial Management Association. All rights reserved.
引用
收藏
页码:178 / 181
页数:3
相关论文
共 50 条
  • [31] Interactive image segmentation using probabilistic hypergraphs
    Ding, Lei
    Yilmaz, Alper
    PATTERN RECOGNITION, 2010, 43 (05) : 1863 - 1873
  • [32] Interactive organ segmentation using graph cuts
    Boykov, Y
    Jolly, MP
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 276 - 286
  • [33] Interactive Segmentation Using Constrained Laplacian Optimization
    Shen, Jianbing
    Du, Yunfan
    Li, Xuelong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (07) : 1088 - 1100
  • [34] Interactive Image Segmentation Using Elastic Interpolation
    Meena, Sachin
    Palaniappan, Kannappan
    Seetharaman, Guna
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2015, : 307 - 310
  • [35] Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning
    Wang, Guotai
    Li, Wenqi
    Zuluaga, Maria A.
    Pratt, Rosalind
    Patel, Premal A.
    Aertsen, Michael
    Doel, Tom
    David, Anna L.
    Deprest, Jan
    Ourselin, Sebastien
    Vercauteren, Tom
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (07) : 1562 - 1573
  • [36] Minimally interactive segmentation of soft-tissue tumors on CT and MRI using deep learning
    Spaanderman, Douwe J.
    Starmans, Martijn P. A.
    van Erp, Gonnie C. M.
    Hanff, David F.
    Sluijter, Judith H.
    Schut, Anne-Rose W.
    van Leenders, Geert J. L. H.
    Verhoef, Cornelis
    Gruenhagen, Dirk J.
    Niessen, Wiro J.
    Visser, Jacob J.
    Klein, Stefan
    EUROPEAN RADIOLOGY, 2024,
  • [37] Interactive Part Segmentation Using Edge Images
    Oh, Ju-Young
    Park, Jung-Min
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [38] INTERACTIVE OBJECT SEGMENTATION USING SINGLE TOUCH
    Gopalakrishnan, Viswanath
    Purwar, Anirudh
    Lokkoju, Satish
    Kumar, Raushan
    Iyer, Kiran Nanjunda
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 281 - 285
  • [39] MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning
    Luo, Xiangde
    Wang, Guotai
    Song, Tao
    Zhang, Jingyang
    Aertsen, Michael
    Deprest, Jan
    Ourselin, Sebastien
    Vercauteren, Tom
    Zhang, Shaoting
    MEDICAL IMAGE ANALYSIS, 2021, 72
  • [40] CONNECTIVITY SIMILARITY BASED TRANSDUCTIVE LEARNING FOR INTERACTIVE IMAGE SEGMENTATION
    Mu, Yadong
    Zhou, Bingfeng
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1233 - 1236