Benefit segmentation using a ghsom modified for interactive learning

被引:0
|
作者
Sasaki K. [1 ]
Ochikubo S. [1 ]
Toriduka K. [1 ]
Luo X. [2 ]
Saitoh F. [3 ]
Ishizu S. [1 ]
机构
[1] Aoyama Gakuin University, Japan
[2] Waseda University, Japan
[3] Chiba Institute of Technology, Japan
来源
关键词
Benefit; Data Visualization; Market Segmentation; Self-organizing Map;
D O I
10.11221/jima.70.178
中图分类号
学科分类号
摘要
The Self-organizing Map (SOM) is one of the learning models widely used in market segmentation, and Growing Hierarchical SOM (GHSOM), which is a model extended to a hierarchical structure, is also used for the task. However, GHSOM cannot increase the map size due to the limitation of the number of data allocated to the underlying map. To aim for visual understanding of market data, we newly propose construction of a model through interacting with GHSOM analysts. In the analysis, we extract the newly defined indexes that show the customers behavior from the dataset as the feature vectors. Furthermore, market segments hidden in data set are visualized based on the method we propose. © 2019 Japan Industrial Management Association. All rights reserved.
引用
收藏
页码:178 / 181
页数:3
相关论文
共 50 条
  • [11] Accelerated Learning-Based Interactive Image Segmentation Using Pairwise Constraints
    Sourati, Jamshid
    Erdogmus, Deniz
    Dy, Jennifer G.
    Brooks, Dana H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 3057 - 3070
  • [12] A Transductive Learning Method for Interactive Image Segmentation
    Xu, Jiazhen
    Chen, Xinmeng
    Wei, Yang
    Huang, Xuejuan
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 378 - 385
  • [13] A Machine learning approach for interactive lesion segmentation
    Li, Yuanzhong
    Hara, Shoji
    Ito, Wataru
    Shimura, Kazuo
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [14] Interactive image segmentation based on ensemble learning
    Liu J.-P.
    Chen Q.
    Zhang J.
    Tang Z.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2016, 44 (07): : 1649 - 1655
  • [15] Global Manifold Learning for Interactive Image Segmentation
    Wang, Tao
    Ji, Zexuan
    Yang, Jian
    Sun, Quansen
    Fu, Peng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3239 - 3249
  • [16] Lossy Image Compression Using a GHSOM
    Palomo, E. J.
    Dominguez, E.
    Luque, R. M.
    Munoz, J.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 1 - 8
  • [17] Automated SAR Image Segmentation and Classification Using Modified Deep Learning
    Srinitya, G.
    Sharmila, D.
    Logeswari, S.
    Raja, S. Daniel Madan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [18] Learning-Based Interactive Segmentation using the Maximum Mean Cycle Weight Formalism
    Nilufar, S.
    Wang, D. S.
    Girgis, J.
    Palii, C. G.
    Yang, D.
    Blais, A.
    Brand, M.
    Precup, D.
    Perkins, T. J.
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [19] Multilingual Information Retrieval using GHSOM
    Yang, Hsin-Chang
    Lee, Chung-Hong
    ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, PROCEEDINGS, 2008, : 225 - +
  • [20] INTERACTIVE CT IMAGE SEGMENTATION WITH ONLINE DISCRIMINATIVE LEARNING
    Yang, Wei
    Wang, Xiaolong
    Lin, Liang
    Gao, Chengying
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 425 - 428