Benefit segmentation using a ghsom modified for interactive learning

被引:0
|
作者
Sasaki K. [1 ]
Ochikubo S. [1 ]
Toriduka K. [1 ]
Luo X. [2 ]
Saitoh F. [3 ]
Ishizu S. [1 ]
机构
[1] Aoyama Gakuin University, Japan
[2] Waseda University, Japan
[3] Chiba Institute of Technology, Japan
来源
关键词
Benefit; Data Visualization; Market Segmentation; Self-organizing Map;
D O I
10.11221/jima.70.178
中图分类号
学科分类号
摘要
The Self-organizing Map (SOM) is one of the learning models widely used in market segmentation, and Growing Hierarchical SOM (GHSOM), which is a model extended to a hierarchical structure, is also used for the task. However, GHSOM cannot increase the map size due to the limitation of the number of data allocated to the underlying map. To aim for visual understanding of market data, we newly propose construction of a model through interacting with GHSOM analysts. In the analysis, we extract the newly defined indexes that show the customers behavior from the dataset as the feature vectors. Furthermore, market segments hidden in data set are visualized based on the method we propose. © 2019 Japan Industrial Management Association. All rights reserved.
引用
收藏
页码:178 / 181
页数:3
相关论文
共 50 条
  • [1] Iris Segmentation Using Interactive Deep Learning
    Sardar, Mousumi
    Banerjee, Subhashis
    Mitra, Sushmita
    IEEE ACCESS, 2020, 8 : 219322 - 219330
  • [2] Image Hierarchical Segmentation Based on a GHSOM
    Jose Palorno, Esteban
    Dominguez, Enrique
    Marcos Luque, Rafael
    Munoz, Jose
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 743 - 750
  • [3] Optimized segmentation of Brain MRI using GHSOM and evolutive computing
    Ortiz, Andres
    Gorriz, Juan M.
    Ramirez, Javier
    Salas-Gonzalez, Diego
    ADVANCES IN KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, 2012, 243 : 2232 - 2240
  • [4] Interactive segmentation of medical images using deep learning
    Zhao, Xiaoran
    Pan, Haixia
    Bai, Wenpei
    Li, Bin
    Wang, Hongqiang
    Zhang, Meng
    Li, Yanan
    Zhang, Dongdong
    Geng, Haotian
    Chen, Minghuang
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (04):
  • [5] ILASTIK: INTERACTIVE LEARNING AND SEGMENTATION TOOLKIT
    Sommer, Christoph
    Straehle, Christoph
    Koethe, Ullrich
    Hamprecht, Fred A.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 230 - 233
  • [6] Learning based interactive image segmentation
    Bhanu, B
    Fonder, S
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 299 - 302
  • [7] Active Online Learning for Interactive Segmentation Using Sparse Gaussian Processes
    Triebel, Rudolph
    Stuehmer, Jan
    Souiai, Mohamed
    Cremers, Daniel
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 641 - 652
  • [8] Improving MRI segmentation with probabilistic GHSOM and multiobjective optimization
    Ortiz, Andres
    Gorriz, Juan M.
    Ramirez, Javier
    Salas-Gonzalez, Diego
    NEUROCOMPUTING, 2013, 114 : 118 - 131
  • [9] Interactive Image Segmentation Using Dirichlet Process Multiple-View Learning
    Ding, Lei
    Yilmaz, Alper
    Yan, Rong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 2119 - 2129
  • [10] Interactive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach
    Lee, Noah
    Caban, Jesus
    Ebadollahi, Shahram
    Laine, Andrew
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260