A mixed-signal processor for X-ray spectrometry and tracking in the GAPS experiment

被引:1
|
作者
Re V. [1 ,3 ]
Ghislotti L. [1 ]
Lazzaroni P. [1 ,3 ]
Manghisoni M. [1 ,3 ]
Riceputi E. [1 ,3 ]
Ratti L. [2 ,3 ]
Boezio M. [4 ]
Zampa G. [4 ]
Fabris L. [5 ]
机构
[1] Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, Viale Marconi 5, Dalmine
[2] Università di Pavia, Dipartimento di Ingegneria Industriale e dell'Informazione, Via Ferrata, 1, Pavia
[3] INFN, Sezione di Pavia, Via Bassi, 6, Pavia
[4] INFN, Sezione di Trieste, località Padriciano 99, Trieste
[5] Oak Ridge National Laboratory, Oak Ridge, 37831, TN
关键词
CMOS; Front-end; Noise; Readout electronics;
D O I
10.1016/j.nima.2022.167617
中图分类号
学科分类号
摘要
This paper reports the design and experimental results from the characterization of an integrated circuit developed for the readout of the X-ray spectrometer and tracking system of the General AntiParticle Spectrometer (GAPS) balloon mission. GAPS will search for an indirect signature of dark matter through the detection of low-energy (<0.25 GeV/n) cosmic-ray antiprotons, antideuterons and antihelium nuclei. The ASIC, named SLIDER32 (32 channels Si-LI DEtector Readout ASIC), was fabricated in a 180 nm CMOS technology and is comprised of 32 analog readout channels, an 11-bit SAR ADC and a digital back-end section which is responsible for defining channel settings and for sending digital information to the data acquisition system. The core of the ASIC is a low-noise analog channel implementing a dynamic signal compression which makes the chip suitable for resolving both X-rays in the range of 20 to 100 keV and charged particles with energy deposition of up to 100 MeV. It features an energy resolution of 4 keV FWHM in the 20–100 keV range with a 40 pF detector capacitance, to clearly distinguish X-rays from antiprotonic or antideuteronic exotic atoms. The readout electronics of the ASIC will run at a temperature of about –40 °C, complying with a detector leakage current of the order of 5–10 nA per strip. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [31] X-RAY SPECTROMETRY
    MACDONALD, GL
    ANALYTICAL CHEMISTRY, 1980, 52 (05) : R100 - R106
  • [32] X-ray Spectrometry
    Tsuji, Kouichi
    Nakano, Kazuhiko
    Takahashi, Yoshio
    Hayashi, Kouichi
    Ro, Chul-Un
    ANALYTICAL CHEMISTRY, 2012, 84 (02) : 636 - 668
  • [33] X-RAY SPECTROMETRY
    TOROK, SB
    VANGRIEKEN, RE
    ANALYTICAL CHEMISTRY, 1994, 66 (12) : R186 - R206
  • [34] X-RAY SPECTROMETRY
    LEYDEN, DE
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1983, 2 (03) : R10 - R11
  • [35] X-RAY SPECTROMETRY
    BIRKS, LS
    GILFRICH, JV
    ANALYTICAL CHEMISTRY, 1976, 48 (05) : R273 - R281
  • [36] X-RAY SPECTROMETRY
    MACDONALD, GL
    ANALYTICAL CHEMISTRY, 1978, 50 (05) : R135 - R142
  • [37] X-ray spectrometry
    Torok, SB
    Labar, J
    Injuk, J
    VanGrieken, RE
    ANALYTICAL CHEMISTRY, 1996, 68 (12) : R467 - R485
  • [38] X-RAY SPECTROMETRY
    MACDONALD, GL
    ANALYTICAL CHEMISTRY, 1982, 54 (05) : R150 - R156
  • [39] X-ray Spectrometry
    Tsuji, Kouichi
    Nakano, Kazuhiko
    Takahashi, Yoshio
    Hayashi, Kouichi
    Ro, Chul-Un
    ANALYTICAL CHEMISTRY, 2010, 82 (12) : 4950 - 4987
  • [40] X-ray spectrometry
    Szaloki, Imre
    Osan, Janos
    Van Grieken, Rene E.
    ANALYTICAL CHEMISTRY, 2006, 78 (12) : 4069 - 4096