Genuinely nonlocal sets without entanglement in multipartite systems

被引:1
|
作者
Lu, Ying-Ying [1 ]
Cao, Hai-Qing [1 ]
Zuo, Hui-Juan [1 ,2 ,3 ]
Fei, Shao-Ming [4 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050024, Peoples R China
[3] Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
[4] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
QUANTUM NONLOCALITY;
D O I
10.1103/PhysRevA.110.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A set of multipartite orthogonal states is genuinely nonlocal if it is locally indistinguishable in every bipartition of the subsystems. If the set is locally reducible, we say it has genuine nonlocality of type I. Otherwise, we say it has genuine nonlocality of type II. Due to the complexity of the problem, the construction of genuinely nonlocal sets in general multipartite systems has not been completely solved so far. In this paper, we first provide a nonlocal set of product states in bipartite systems. We obtain a genuinely nonlocal set of type I without entanglement in general n-partite systems circle times ni=1CCdi[3 (d1 - 1) d2 <middle dot> <middle dot> <middle dot> dn, n 3]. Then we present two constructions with genuine nonlocality of type II in CCd1 circle times CCd2 circle times CCd3 (3 d1 d2 d3) and circle times ni=1CCdi (3 d1 d2 <middle dot> <middle dot> <middle dot> dn, n 4). Our results further positively answer the open problem that there does exist a genuinely nonlocal set of type II in multipartite systems [M. S. Li, Y. L. Wang, F. Shi, and M. H. Yung, J. Phys. A: Math. Theor. 54, 445301 (2021)] and highlight its related applications in quantum information processing.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Structure of Multidimensional Entanglement in Multipartite Systems
    Huber, Marcus
    de Vicente, Julio I.
    PHYSICAL REVIEW LETTERS, 2013, 110 (03)
  • [42] Entanglement for multipartite systems of indistinguishable particles
    Grabowski, Janusz
    Kus, Marek
    Marmo, Giuseppe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (17)
  • [43] Local distinguishability based genuinely quantum nonlocality without entanglement
    Li, Mao-Sheng
    Wang, Yan-Ling
    Shi, Fei
    Yung, Man-Hong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (44)
  • [44] Locally distinguishing nonlocal sets with entanglement resource
    Cao, Hai-Qing
    Zuo, Hui-Juan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 623
  • [45] Nonlocal sets of orthogonal multipartite product states with less members
    Zuo, Hui-Juan
    Liu, Jia-Huan
    Zhen, Xiao-Fan
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2021, 20 (12)
  • [46] Several nonlocal sets of multipartite pure orthogonal product states
    Halder, Saronath
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [47] Nonlocal sets of orthogonal multipartite product states with less members
    Hui-Juan Zuo
    Jia-Huan Liu
    Xiao-Fan Zhen
    Shao-Ming Fei
    Quantum Information Processing, 2021, 20
  • [48] Nonlocal nondegenerate optical parametric amplifier based on genuine multipartite entanglement
    Zhang, Jing
    Xie, Changde
    Peng, Kunchi
    PHYSICAL REVIEW A, 2007, 76 (06):
  • [49] Multiparty anonymous quantum communication without multipartite entanglement
    Yang, Yu-Guang
    Cao, Guo-Dong
    Huang, Rui-Chen
    Gao, Shang
    Zhou, Yi-Hua
    Shi, Wei-Min
    Xu, Guang-Bao
    QUANTUM INFORMATION PROCESSING, 2022, 21 (06)
  • [50] Characterizing multipartite entanglement without shared reference frames
    Kloeckl, C.
    Huber, M.
    PHYSICAL REVIEW A, 2015, 91 (04):