Genuinely nonlocal sets without entanglement in multipartite systems

被引:1
|
作者
Lu, Ying-Ying [1 ]
Cao, Hai-Qing [1 ]
Zuo, Hui-Juan [1 ,2 ,3 ]
Fei, Shao-Ming [4 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050024, Peoples R China
[3] Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
[4] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
QUANTUM NONLOCALITY;
D O I
10.1103/PhysRevA.110.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A set of multipartite orthogonal states is genuinely nonlocal if it is locally indistinguishable in every bipartition of the subsystems. If the set is locally reducible, we say it has genuine nonlocality of type I. Otherwise, we say it has genuine nonlocality of type II. Due to the complexity of the problem, the construction of genuinely nonlocal sets in general multipartite systems has not been completely solved so far. In this paper, we first provide a nonlocal set of product states in bipartite systems. We obtain a genuinely nonlocal set of type I without entanglement in general n-partite systems circle times ni=1CCdi[3 (d1 - 1) d2 <middle dot> <middle dot> <middle dot> dn, n 3]. Then we present two constructions with genuine nonlocality of type II in CCd1 circle times CCd2 circle times CCd3 (3 d1 d2 d3) and circle times ni=1CCdi (3 d1 d2 <middle dot> <middle dot> <middle dot> dn, n 4). Our results further positively answer the open problem that there does exist a genuinely nonlocal set of type II in multipartite systems [M. S. Li, Y. L. Wang, F. Shi, and M. H. Yung, J. Phys. A: Math. Theor. 54, 445301 (2021)] and highlight its related applications in quantum information processing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Photonic multipartite entanglement conversion using nonlocal operations
    Tashima, T.
    Tame, M. S.
    Ozdemir, S. K.
    Nori, F.
    Koashi, M.
    Weinfurter, H.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [22] Nonlocal sets of orthogonal product states with less members in multipartite quantum systems
    Zhang, Yong-Qi
    Jiang, Dong-Huan
    Yang, Yu-Guang
    Xu, Guang-Bao
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)
  • [23] Conditions for entanglement in multipartite systems
    Hillery, Mark
    Ho Trung Dung
    Zheng, Hongjun
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [24] Degrees of entanglement for multipartite systems
    Solomon, A. I.
    Ho, C-L
    Duchamp, G. H. E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (07)
  • [25] Multipartite entanglement in qubit systems
    Facchi, Paolo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (01) : 25 - 67
  • [26] Locally distinguishing genuinely nonlocal sets with one GHZ state
    Zhang, Su-Juan
    Qiao, Qiao
    Bai, Chen-Ming
    QUANTUM INFORMATION PROCESSING, 2025, 24 (04)
  • [27] Entanglement monogamy and entanglement evolution in multipartite systems
    Bai, Yan-Kui
    Ye, Ming-Yong
    Wang, Z. D.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [28] Multipartite entanglement in heterogeneous systems
    Goyeneche, Dardo
    Bielawski, Jakub
    Zyczkowski, Karol
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [29] Distribution of entanglement in multipartite systems
    Awais Khan
    Ahmad Farooq
    Youngmin Jeong
    Hyundong Shin
    Quantum Information Processing, 2019, 18
  • [30] Distribution of entanglement in multipartite systems
    Khan, Awais
    Farooq, Ahmad
    Jeong, Youngmin
    Shin, Hyundong
    QUANTUM INFORMATION PROCESSING, 2019, 18 (02)