Genuinely nonlocal sets without entanglement in multipartite systems

被引:1
|
作者
Lu, Ying-Ying [1 ]
Cao, Hai-Qing [1 ]
Zuo, Hui-Juan [1 ,2 ,3 ]
Fei, Shao-Ming [4 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050024, Peoples R China
[3] Hebei Int Joint Res Ctr Math & Interdisciplinary S, Shijiazhuang 050024, Peoples R China
[4] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
QUANTUM NONLOCALITY;
D O I
10.1103/PhysRevA.110.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A set of multipartite orthogonal states is genuinely nonlocal if it is locally indistinguishable in every bipartition of the subsystems. If the set is locally reducible, we say it has genuine nonlocality of type I. Otherwise, we say it has genuine nonlocality of type II. Due to the complexity of the problem, the construction of genuinely nonlocal sets in general multipartite systems has not been completely solved so far. In this paper, we first provide a nonlocal set of product states in bipartite systems. We obtain a genuinely nonlocal set of type I without entanglement in general n-partite systems circle times ni=1CCdi[3 (d1 - 1) d2 <middle dot> <middle dot> <middle dot> dn, n 3]. Then we present two constructions with genuine nonlocality of type II in CCd1 circle times CCd2 circle times CCd3 (3 d1 d2 d3) and circle times ni=1CCdi (3 d1 d2 <middle dot> <middle dot> <middle dot> dn, n 4). Our results further positively answer the open problem that there does exist a genuinely nonlocal set of type II in multipartite systems [M. S. Li, Y. L. Wang, F. Shi, and M. H. Yung, J. Phys. A: Math. Theor. 54, 445301 (2021)] and highlight its related applications in quantum information processing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Small sets of genuinely nonlocal Greenberger-Horne-Zeilinger states in multipartite systems
    Xiong, Zong-Xing
    Zhang, Yongli
    Li, Mao-Sheng
    Li, Lvzhou
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [2] Locally distinguishing genuinely nonlocal sets with entanglement resource
    Qiao Qiao
    Su-Juan Zhang
    Chen-Ming Bai
    Lu Liu
    Communications in Theoretical Physics, 2024, 76 (12) : 44 - 51
  • [3] Locally distinguishing genuinely nonlocal sets with entanglement resource
    Qiao, Qiao
    Zhang, Su-Juan
    Bai, Chen-Ming
    Liu, Lu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (12)
  • [4] New Genuinely Multipartite Entanglement
    Luo, Ming-Xing
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (02)
  • [5] Thermodynamic Signatures of Genuinely Multipartite Entanglement
    Puliyil, Samgeeth
    Banik, Manik
    Alimuddin, Mir
    PHYSICAL REVIEW LETTERS, 2022, 129 (07)
  • [6] General spin systems without genuinely multipartite nonlocality
    Yang, Yan-Han
    Yang, Xue
    Luo, Ming-Xing
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (04):
  • [7] General spin systems without genuinely multipartite nonlocality
    Yan-Han Yang
    Xue Yang
    Ming-Xing Luo
    The European Physical Journal D, 2022, 76
  • [8] Genuinely Multipartite Entanglement Vias Shallow Quantum Circuits
    Luo, Ming-Xing
    Fei, Shao-Ming
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (02)
  • [9] Fully Nonlocal, Monogamous, and Random Genuinely Multipartite Quantum Correlations
    Aolita, Leandro
    Gallego, Rodrigo
    Cabello, Adan
    Acin, Antonio
    PHYSICAL REVIEW LETTERS, 2012, 108 (10)
  • [10] Nonlocality without entanglement in general multipartite quantum systems
    Zhen, Xiao-Fan
    Fei, Shao-Ming
    Zuo, Hui-Juan
    PHYSICAL REVIEW A, 2022, 106 (06)