A dual-branch network based on optical flow learning and semantic consistency for macro-expression spotting

被引:0
|
作者
Xian, Yun [1 ]
Zhang, Dong [1 ]
Wang, Xingzhi [1 ]
Lee, Dah-Jye [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
基金
中国国家自然科学基金;
关键词
Macro-expression spotting; Semantic consistency; Optical flow; Deep learning-based;
D O I
10.1007/s10489-024-05726-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Macro-expression spotting is an important prior step in many dynamic facial expression analysis applications. It automatically detects the onset and offset image frames of a macro-expression in the video. The state-of-the-art methods of macro-expression spotting characterize the movement of facial muscle through explicit analysis of the optical flow map and have achieved promising results. However, optical flow map estimation and expression spotting in these methods are performed in two separate and successive stages. In this paper, we propose a new dual-branch network to achieve unified optimization for expression spotting and optical flow estimation tasks. The proposed dual-branch network implicitly learns optical flow during training and enriches the feature representation with motion information. During inference, we use only the encoder of the optical flow estimation network for motion feature extraction and integrate it with expression spotting into a one-stage framework. The proposed method eliminates the need to construct optical flow maps explicitly during inference and significantly reduces the computational cost. We also apply a consistency constraint on the global- and local-level semantic features of the clip to guide the model to focus on the category-consistent regions of the video. We evaluate the proposed methods extensively on two popular facial expression spotting datasets, CAS(ME)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} and SAMM Long Videos. The experimental results show that compared with the state-of-the-art methods, the proposed method improves the F1-scores for MaE spotting by 5.81%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 1.57%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the CAS(ME)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} and SAMM Long Videos datasets respectively.
引用
收藏
页码:10284 / 10299
页数:16
相关论文
共 50 条
  • [41] A dual-branch hybrid network of CNN and transformer with adaptive keyframe scheduling for video semantic segmentation
    Zhixue Liang
    Wenyong Dong
    Bo Zhang
    Multimedia Systems, 2024, 30
  • [42] A dual-branch hybrid network of CNN and transformer with adaptive keyframe scheduling for video semantic segmentation
    Liang, Zhixue
    Dong, Wenyong
    Zhang, Bo
    MULTIMEDIA SYSTEMS, 2024, 30 (02)
  • [43] Dual-branch deep cross-modal interaction network for semantic segmentation with thermal images
    Dai, Kang
    Chen, Suting
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [44] Dual-branch Branch Networks Based on Contrastive Learning for Long-Tailed Remote Sensing
    Zhang, Lei
    Peng, Lijia
    Xia, Pengfei
    Wei, Chuyuan
    Yang, Chengwei
    Zhang, Yanyan
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2024, 90 (01): : 45 - 53
  • [45] Hyperspectral unmixing method based on dual-branch multiscale residual attention network
    Chen, Congping
    Xu, Zhiwei
    Lu, Peng
    Cao, Nuo
    OPTICAL ENGINEERING, 2023, 62 (09)
  • [46] Hyperspectral Image Classification Based on Dual-Branch Spectral Multiscale Attention Network
    Shi, Cuiping
    Liao, Diling
    Xiong, Yi
    Zhang, Tianyu
    Wang, Liguo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10450 - 10467
  • [47] Facial Expression Spotting Based on Optical Flow Features
    Yu, Jun
    Cai, Zhongpeng
    Liu, Zepeng
    Xie, Guochen
    He, Peng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 7205 - 7209
  • [48] Entire-detail motion dual-branch network for micro-expression recognition
    Ma, Bingyang
    Wang, Lu
    Wang, Qingfen
    Wang, Haoran
    Li, Ruolin
    Xu, Lisheng
    Li, Yongchun
    Wei, Hongchao
    PATTERN RECOGNITION LETTERS, 2025, 189 : 166 - 174
  • [49] A Dual-branch Enhanced Multi-task Learning Network for Multimodal Sentiment Analysis
    Geng, Wenxiu
    Li, Xiangxian
    Bian, Yulong
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 481 - 489
  • [50] Dual-branch interactive cross-frequency attention network for deep feature learning
    Li, Qiufu
    Shen, Linlin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 254