A dual-branch network based on optical flow learning and semantic consistency for macro-expression spotting

被引:0
|
作者
Xian, Yun [1 ]
Zhang, Dong [1 ]
Wang, Xingzhi [1 ]
Lee, Dah-Jye [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
基金
中国国家自然科学基金;
关键词
Macro-expression spotting; Semantic consistency; Optical flow; Deep learning-based;
D O I
10.1007/s10489-024-05726-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Macro-expression spotting is an important prior step in many dynamic facial expression analysis applications. It automatically detects the onset and offset image frames of a macro-expression in the video. The state-of-the-art methods of macro-expression spotting characterize the movement of facial muscle through explicit analysis of the optical flow map and have achieved promising results. However, optical flow map estimation and expression spotting in these methods are performed in two separate and successive stages. In this paper, we propose a new dual-branch network to achieve unified optimization for expression spotting and optical flow estimation tasks. The proposed dual-branch network implicitly learns optical flow during training and enriches the feature representation with motion information. During inference, we use only the encoder of the optical flow estimation network for motion feature extraction and integrate it with expression spotting into a one-stage framework. The proposed method eliminates the need to construct optical flow maps explicitly during inference and significantly reduces the computational cost. We also apply a consistency constraint on the global- and local-level semantic features of the clip to guide the model to focus on the category-consistent regions of the video. We evaluate the proposed methods extensively on two popular facial expression spotting datasets, CAS(ME)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} and SAMM Long Videos. The experimental results show that compared with the state-of-the-art methods, the proposed method improves the F1-scores for MaE spotting by 5.81%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 1.57%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the CAS(ME)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} and SAMM Long Videos datasets respectively.
引用
收藏
页码:10284 / 10299
页数:16
相关论文
共 50 条
  • [31] A Dual-Branch Deep Learning Architecture for Multisensor and Multitemporal Remote Sensing Semantic Segmentation
    Bergamasco, Luca
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2147 - 2162
  • [32] Self-cure Dual-branch Network for Facial Expression Recognition Based on Visual Sensors
    Wu, Dongsheng
    Chen, Yifan
    Lin, Yuting
    Xu, Pengfei
    Gao, Dongxu
    SENSORS AND MATERIALS, 2024, 36 (11)
  • [33] Efficient Dual-Branch Bottleneck Networks of Semantic Segmentation Based on CCD Camera
    Li, Jiehao
    Dai, Yingpeng
    Su, Xiaohang
    Wu, Weibin
    REMOTE SENSING, 2022, 14 (16)
  • [34] A Micro-Expression Apex Frame Spotting Method Based on Optical-Flow-Dual-Input Network
    Zheng S.
    Chen M.
    Wang X.
    Gong X.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2022, 42 (07): : 749 - 754
  • [35] Facial expression recognition via a jointly-learned dual-branch network
    Bordjiba, Yamina
    Merouani, Hayet Farida
    Azizi, Nabiha
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (06) : 447 - 456
  • [36] Dual-branch feature learning network for single image super-resolution
    Yu L.
    Deng Q.
    Liu B.
    Wu H.
    Hu H.
    Multimedia Tools and Applications, 2023, 82 (28) : 43297 - 43314
  • [37] Classification of hyperspectral image based on dual-branch feature interaction network
    Li, Chenming
    Wang, Xiangyi
    Chen, Zhonghao
    Gao, Hongmin
    Xu, Shufang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3258 - 3279
  • [38] A dual-branch fracture attribute fusion network based on prior knowledge
    Jiang, Wenbin
    Zhang, Dongmei
    Hui, Gang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [39] An attention-based RGBD dual-branch gesture recognition network
    Chen, Bo
    Xie, Pengwei
    Hao, Nan
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8022 - 8027
  • [40] Food image segmentation based on deep and shallow dual-branch network
    Xiao, Zhiyong
    Li, Yang
    Deng, Zhaohong
    MULTIMEDIA SYSTEMS, 2025, 31 (01)