A dual-branch network based on optical flow learning and semantic consistency for macro-expression spotting

被引:0
|
作者
Xian, Yun [1 ]
Zhang, Dong [1 ]
Wang, Xingzhi [1 ]
Lee, Dah-Jye [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
基金
中国国家自然科学基金;
关键词
Macro-expression spotting; Semantic consistency; Optical flow; Deep learning-based;
D O I
10.1007/s10489-024-05726-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Macro-expression spotting is an important prior step in many dynamic facial expression analysis applications. It automatically detects the onset and offset image frames of a macro-expression in the video. The state-of-the-art methods of macro-expression spotting characterize the movement of facial muscle through explicit analysis of the optical flow map and have achieved promising results. However, optical flow map estimation and expression spotting in these methods are performed in two separate and successive stages. In this paper, we propose a new dual-branch network to achieve unified optimization for expression spotting and optical flow estimation tasks. The proposed dual-branch network implicitly learns optical flow during training and enriches the feature representation with motion information. During inference, we use only the encoder of the optical flow estimation network for motion feature extraction and integrate it with expression spotting into a one-stage framework. The proposed method eliminates the need to construct optical flow maps explicitly during inference and significantly reduces the computational cost. We also apply a consistency constraint on the global- and local-level semantic features of the clip to guide the model to focus on the category-consistent regions of the video. We evaluate the proposed methods extensively on two popular facial expression spotting datasets, CAS(ME)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} and SAMM Long Videos. The experimental results show that compared with the state-of-the-art methods, the proposed method improves the F1-scores for MaE spotting by 5.81%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 1.57%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the CAS(ME)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} and SAMM Long Videos datasets respectively.
引用
收藏
页码:10284 / 10299
页数:16
相关论文
共 50 条
  • [1] Integrating VideoMAE based model and Optical Flow for Microand Macro-expression Spotting
    Xu, Ke
    Chen, Kang
    Sun, Licai
    Lian, Zheng
    Liu, Bin
    Chen, Gong
    Sun, Haiyang
    Xu, Mingyu
    Tao, Jianhua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9576 - 9580
  • [2] Incremental Learning Based on Dual-Branch Network
    Dong, Mingda
    Zhang, Zhizhong
    Xie, Yuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 263 - 272
  • [3] Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition
    Mao, Shasha
    Zhang, Yuanyuan
    Yan, Dandan
    Chen, Puhua
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 566 - 570
  • [4] ABPN: Apex and Boundary Perception Network for Micro- and Macro-Expression Spotting
    Leng, Wenhao
    Zhao, Sirui
    Zhang, Yiming
    Liu, Shifeng
    Mao, Xinglong
    Wang, Hao
    Xu, Tong
    Chen, Enhong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 7160 - 7164
  • [5] CosineTR: A dual-branch transformer-based network for semantic line detection
    Zhang, Yuqi
    Ma, Bole
    Jin, Luyang
    Yang, Yuancheng
    Tong, Chao
    PATTERN RECOGNITION, 2025, 158
  • [6] A SAM-based dual-branch network for remote sensing semantic segmentation
    Zhang, Hui
    REMOTE SENSING LETTERS, 2025, 16 (04) : 365 - 375
  • [7] LGSNet: A Two-Stream Network for Micro- and Macro-Expression Spotting With Background Modeling
    Yu, Wang-Wang
    Jiang, Jingwen
    Yang, Kai-Fu
    Yan, Hong-Mei
    Li, Yong-Jie
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (01) : 223 - 240
  • [8] Dual-Branch Residual Disentangled Adversarial Learning Network for Facial Expression Recognition
    Chen, Puhua
    Wang, Zhe
    Mao, Shasha
    Hui, Xinyue
    Ning, Huyan
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1840 - 1844
  • [9] Generative Steganography Based on Dual-Branch Flow
    Cheng, Ke
    Song, Bingbing
    Wei, Ping
    Zhou, Wei
    Yi, Chao
    Dong, Yunyun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 160 - 173
  • [10] Y-Net: Dual-branch Joint Network for Semantic Segmentation
    Chen, Yizhen
    Hu, Haifeng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (04)