On greedy partially randomized extended Kaczmarz method for solving large sparse inconsistent linear systems

被引:1
|
作者
Chen, Fang [1 ]
Mao, Jin-Feng [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
关键词
Convergence property; Moore-Penrose pseudoinverse; Large sparse linear system; Greedy partially randomized extended Kaczmarz method; BLOCK KACZMARZ; ALGORITHM; CONVERGENCE;
D O I
10.1007/s11075-024-01962-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving large, sparse, and inconsistent linear systems, an effective method is the partially randomized extended Kaczmarz method. In this paper, we introduce a greedy probability criterion to select working rows in the partially randomized extended Kaczmarz method, and propose a greedy partially randomized extended Kaczmarz method. We derive upper bound for the expercted convergence rate of this method. Besides, numerical experiments verify the effectiveness of the greedy partially randomized extended Kaczmarz method.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] On greedy randomized block Kaczmarz method for consistent linear systems
    Liu, Yong
    Gu, Chuan-Qing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 616 : 178 - 200
  • [32] A WEIGHTED RANDOMIZED KACZMARZ METHOD FOR SOLVING LINEAR SYSTEMS
    Steinerberger, Stefan
    MATHEMATICS OF COMPUTATION, 2021, 90 (332) : 2815 - 2826
  • [33] An efficient variant of the greedy block Kaczmarz algorithm for solving large linear systems
    Zhang, Ke
    Yin, Hong-Yan
    Jiang, Xiang-Long
    AIMS MATHEMATICS, 2024, 9 (01): : 2473 - 2499
  • [34] A greedy block Kaczmarz algorithm for solving large-scale linear systems
    Niu, Yu-Qi
    Zheng, Bing
    APPLIED MATHEMATICS LETTERS, 2020, 104
  • [35] A class of residual-based extended Kaczmarz methods for solving inconsistent linear systems
    Bao, Wendi
    Lv, Zhonglu
    Zhang, Feiyu
    Li, Weiguo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [36] On fast greedy block Kaczmarz methods for solving large consistent linear systems
    A.-Qin Xiao
    Jun-Feng Yin
    Ning Zheng
    Computational and Applied Mathematics, 2023, 42
  • [37] On fast greedy block Kaczmarz methods for solving large consistent linear systems
    Xiao, A. -Qin
    Yin, Jun-Feng
    Zheng, Ning
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):
  • [38] Extension of an error analysis of the randomized Kaczmarz method for inconsistent linear systems
    Morijiri, Yushi
    Aishima, Kensuke
    Matsuo, Takayasu
    JSIAM LETTERS, 2018, 10 : 17 - 20
  • [39] On Convergence of the Partially Randomized Extended Kaczmarz Method
    Wu, Wen-Ting
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (02) : 435 - 448
  • [40] Linear convergence of the randomized sparse Kaczmarz method
    Schoepfer, Frank
    Lorenz, Dirk A.
    MATHEMATICAL PROGRAMMING, 2019, 173 (1-2) : 509 - 536