On greedy partially randomized extended Kaczmarz method for solving large sparse inconsistent linear systems

被引:1
|
作者
Chen, Fang [1 ]
Mao, Jin-Feng [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
关键词
Convergence property; Moore-Penrose pseudoinverse; Large sparse linear system; Greedy partially randomized extended Kaczmarz method; BLOCK KACZMARZ; ALGORITHM; CONVERGENCE;
D O I
10.1007/s11075-024-01962-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving large, sparse, and inconsistent linear systems, an effective method is the partially randomized extended Kaczmarz method. In this paper, we introduce a greedy probability criterion to select working rows in the partially randomized extended Kaczmarz method, and propose a greedy partially randomized extended Kaczmarz method. We derive upper bound for the expercted convergence rate of this method. Besides, numerical experiments verify the effectiveness of the greedy partially randomized extended Kaczmarz method.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On Multi-step Extended Maximum Residual Kaczmarz Method for Solving Large Inconsistent Linear Systems
    Xiao, A. -Qin
    Yin, Jun-Feng
    Zheng, Ning
    RESULTS IN MATHEMATICS, 2024, 79 (05)
  • [22] Accelerated greedy randomized augmented Kaczmarz algorithm for inconsistent linear systems
    Liu, Yong
    Applied Numerical Mathematics, 2024, 195 : 142 - 156
  • [23] Accelerated greedy randomized augmented Kaczmarz algorithm for inconsistent linear systems
    Liu, Yong
    APPLIED NUMERICAL MATHEMATICS, 2024, 195 : 142 - 156
  • [24] Accelerated Greedy Randomized Kaczmarz Algorithm for Solving Linear Systems
    Liu, Yong
    Liu, Shimin
    Zhang, Zhiyong
    IAENG International Journal of Computer Science, 2023, 50 (03)
  • [25] THE GREEDY RANDOMIZED EXTENDED KACZMARZ ALGORITHM FOR NOISY LINEAR SYSTEMS
    Chen, Na
    Zhu, Deliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 913 - 927
  • [26] On greedy multi-step inertial randomized Kaczmarz method for solving linear systems
    Su, Yansheng
    Han, Deren
    Zeng, Yun
    Xie, Jiaxin
    CALCOLO, 2024, 61 (04)
  • [27] A greedy average block sparse Kaczmarz method for sparse solutions of linear systems
    Xiao, A. -Qin
    Yin, Jun-Feng
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [28] On extended Kaczmarz methods with random sampling and maximum-distance for solving large inconsistent linear systems
    Lv, Zhonglu
    Bao, Wendi
    Li, Weiguo
    Wang, Fang
    Wu, Guoli
    RESULTS IN APPLIED MATHEMATICS, 2022, 13
  • [29] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Yun Zeng
    Deren Han
    Yansheng Su
    Jiaxin Xie
    Numerical Algorithms, 2023, 94 : 1403 - 1420
  • [30] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Zeng, Yun
    Han, Deren
    Su, Yansheng
    Xie, Jiaxin
    NUMERICAL ALGORITHMS, 2023, 94 (03) : 1403 - 1420