Learnable features for predicting properties of metal-organic frameworks with deep neural networks

被引:1
|
作者
Nguyen, Van-Quyen [1 ,2 ]
Le, Phuoc-Anh [1 ,2 ,8 ]
Nguyen, Phi Long [1 ,2 ]
Pham, Tien-Lam [3 ,4 ]
Phung, Thi Viet Bac [1 ,2 ]
Novoselov, Kostya S. [5 ]
El Ghaoui, Laurent [1 ,2 ,6 ,7 ]
机构
[1] VinUniv, Ctr Environm Intelligence, Hanoi 100000, Vietnam
[2] VinUniv, Coll Engn & Comp Sci, Hanoi 100000, Vietnam
[3] Phenikaa Univ, Phenikaa Inst Adv Study PIAS, Hanoi 12116, Vietnam
[4] Phenikaa Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[5] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore, Singapore
[6] Univ Calif Berkeley, Berkeley Artificial Intelligence Res, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[8] Vietnam Acad Sci & Technol, Inst Chem, Hanoi 100000, Vietnam
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 08期
关键词
OPPORTUNITIES; MODELS; SINGLE;
D O I
10.1016/j.xcrp.2024.102101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials science is being rapidly transformed by machine learning tools. This paper introduces a machine learning approach for predicting energy and other derived properties in metal-organic frameworks (MOFs). Using neural networks, our approach generates embedding characteristics for both local atomic structures and the overall MOF system by extracting hidden representations of pair- wise interactions among atoms inside MOFs. These networks are trained using total energies derived from density functional theory computations, and they are shared for all paired terms. The model performs better than others in terms of total energy prediction, with a mean absolute error of about 0.09 eV/atom. Furthermore, we demonstrate the transferability of the learned features to accurately predict band gaps. t-Distributed stochastic neighbor embedding is utilized to gain insights into the meaningful patterns within the MOF space, while a K-means clustering model is carried out to detect distinct groups of MOFs.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On the role of dynamics in understanding the properties of metal-organic frameworks
    Lopez, Nuria
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [42] Classifying and Predicting the Thermal Expansion Properties of Metal-Organic Frameworks: A Data-Driven Approach
    Yue, Yifei
    Mohamed, Saad Aldin
    Jiang, Jianwen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (13) : 4966 - 4979
  • [43] Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks
    Kharod, Ruby A.
    Andrews, Justin L.
    Dinc, Mircea
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2022, 52 : 103 - 128
  • [44] Substitution reactions in metal-organic frameworks and metal-organic polyhedra
    Han, Yi
    Li, Jian-Rong
    Xie, Yabo
    Guo, Guangsheng
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 5952 - 5981
  • [45] Metal-organic frameworks and porous polymer networks for hydrogen storage
    Zhou, Hong-Cai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [46] Metal-Ion Metathesis in Metal-Organic Frameworks: A Synthetic Route to New Metal-Organic Frameworks
    Kim, Yonghwi
    Das, Sunirban
    Bhattacharya, Saurav
    Hong, Soonsang
    Kim, Min Gyu
    Yoon, Minyoung
    Natarajan, Srinivasan
    Kim, Kimoon
    CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (52) : 16642 - 16648
  • [47] Metal-Organic Frameworks as Electrocatalysts
    Peng, Yong
    Sanati, Soheila
    Morsali, Ali
    Garcia, Hermenegildo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
  • [48] Electrocatalytic metal-organic frameworks
    Noh, Hyunho
    Peters, Aaron
    Farha, Omar
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [49] Docking in Metal-Organic Frameworks
    Li, Qiaowei
    Zhang, Wenyu
    Miljanic, Ognjen S.
    Sue, Chi-Hau
    Zhao, Yan-Li
    Liu, Lihua
    Knobler, Carolyn B.
    Stoddart, J. Fraser
    Yaghi, Omar M.
    SCIENCE, 2009, 325 (5942) : 855 - 859
  • [50] Multivariate metal-organic frameworks
    Aasif Helal
    Zain H.Yamani
    Kyle E.Cordova
    Omar M.Yaghi
    National Science Review, 2017, 4 (03) : 296 - 298