Learnable features for predicting properties of metal-organic frameworks with deep neural networks

被引:1
|
作者
Nguyen, Van-Quyen [1 ,2 ]
Le, Phuoc-Anh [1 ,2 ,8 ]
Nguyen, Phi Long [1 ,2 ]
Pham, Tien-Lam [3 ,4 ]
Phung, Thi Viet Bac [1 ,2 ]
Novoselov, Kostya S. [5 ]
El Ghaoui, Laurent [1 ,2 ,6 ,7 ]
机构
[1] VinUniv, Ctr Environm Intelligence, Hanoi 100000, Vietnam
[2] VinUniv, Coll Engn & Comp Sci, Hanoi 100000, Vietnam
[3] Phenikaa Univ, Phenikaa Inst Adv Study PIAS, Hanoi 12116, Vietnam
[4] Phenikaa Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[5] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore, Singapore
[6] Univ Calif Berkeley, Berkeley Artificial Intelligence Res, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[8] Vietnam Acad Sci & Technol, Inst Chem, Hanoi 100000, Vietnam
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 08期
关键词
OPPORTUNITIES; MODELS; SINGLE;
D O I
10.1016/j.xcrp.2024.102101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials science is being rapidly transformed by machine learning tools. This paper introduces a machine learning approach for predicting energy and other derived properties in metal-organic frameworks (MOFs). Using neural networks, our approach generates embedding characteristics for both local atomic structures and the overall MOF system by extracting hidden representations of pair- wise interactions among atoms inside MOFs. These networks are trained using total energies derived from density functional theory computations, and they are shared for all paired terms. The model performs better than others in terms of total energy prediction, with a mean absolute error of about 0.09 eV/atom. Furthermore, we demonstrate the transferability of the learned features to accurately predict band gaps. t-Distributed stochastic neighbor embedding is utilized to gain insights into the meaningful patterns within the MOF space, while a K-means clustering model is carried out to detect distinct groups of MOFs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal Surrogate Models for Predicting the Elastic Moduli of Metal-Organic Frameworks via Multiscale Features
    Lee, Jaejun
    Lee, Inhyo
    Park, Jaejung
    Kim, Heekyu
    Kim, Minseon
    Min, Kyoungmin
    Lee, Seungchul
    CHEMISTRY OF MATERIALS, 2023, 35 (24) : 10457 - 10475
  • [22] Modeling and optimization of metal-organic frameworks membranes for reverse osmosis with artificial neural networks
    Yao, Lei
    Li, Yong
    Cheng, Qisong
    Chen, Zhe
    Song, Jinling
    DESALINATION, 2022, 532
  • [23] Metal-organic frameworks
    James, SL
    CHEMICAL SOCIETY REVIEWS, 2003, 32 (05) : 276 - 288
  • [24] Metal-organic frameworks
    Birkett, Jim
    CHEMICAL & ENGINEERING NEWS, 2017, 95 (30) : 2 - 2
  • [25] Conductive metal-organic frameworks and networks: fact or fantasy?
    Hendon, Christopher H.
    Tiana, Davide
    Walsh, Aron
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (38) : 13120 - 13132
  • [26] Metal-Organic Frameworks and Metal-Organic Cages - A Perspective
    Pilgrim, Ben S.
    Champness, Neil R.
    CHEMPLUSCHEM, 2020, 85 (08): : 1842 - 1856
  • [27] Identifying structural features that control the stability of metal-organic frameworks
    Jasuja, Himanshu
    Cai, Yang
    Cmarik, Greg
    Walton, Krista S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [28] Predicting Methane Storage in Open-Metal-Site Metal-Organic Frameworks
    Koh, Hyun Seung
    Rana, Malay Kumar
    Wong-Foy, Antek G.
    Siegel, Donald J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (24): : 13451 - 13458
  • [29] Rapidly tailor metal-organic frameworks for arsenate removal using graph convolutional neural networks
    Lin, Zuhong
    Chen, Jiarong
    Fang, Ying
    Deng, Shi-hai
    Li, Haipu
    Yang, Ying
    Yao, Jingjing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [30] Recent advances on metal-organic frameworks for deep purification of olefins
    Jiang, Yunjia
    Yang, Wenlei
    Zhang, Yuanbin
    Wang, Lingyao
    Chen, Banglin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (10) : 5563 - 5580