Learnable features for predicting properties of metal-organic frameworks with deep neural networks

被引:1
|
作者
Nguyen, Van-Quyen [1 ,2 ]
Le, Phuoc-Anh [1 ,2 ,8 ]
Nguyen, Phi Long [1 ,2 ]
Pham, Tien-Lam [3 ,4 ]
Phung, Thi Viet Bac [1 ,2 ]
Novoselov, Kostya S. [5 ]
El Ghaoui, Laurent [1 ,2 ,6 ,7 ]
机构
[1] VinUniv, Ctr Environm Intelligence, Hanoi 100000, Vietnam
[2] VinUniv, Coll Engn & Comp Sci, Hanoi 100000, Vietnam
[3] Phenikaa Univ, Phenikaa Inst Adv Study PIAS, Hanoi 12116, Vietnam
[4] Phenikaa Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[5] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore, Singapore
[6] Univ Calif Berkeley, Berkeley Artificial Intelligence Res, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[8] Vietnam Acad Sci & Technol, Inst Chem, Hanoi 100000, Vietnam
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 08期
关键词
OPPORTUNITIES; MODELS; SINGLE;
D O I
10.1016/j.xcrp.2024.102101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials science is being rapidly transformed by machine learning tools. This paper introduces a machine learning approach for predicting energy and other derived properties in metal-organic frameworks (MOFs). Using neural networks, our approach generates embedding characteristics for both local atomic structures and the overall MOF system by extracting hidden representations of pair- wise interactions among atoms inside MOFs. These networks are trained using total energies derived from density functional theory computations, and they are shared for all paired terms. The model performs better than others in terms of total energy prediction, with a mean absolute error of about 0.09 eV/atom. Furthermore, we demonstrate the transferability of the learned features to accurately predict band gaps. t-Distributed stochastic neighbor embedding is utilized to gain insights into the meaningful patterns within the MOF space, while a K-means clustering model is carried out to detect distinct groups of MOFs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Automated Graph Neural Networks Accelerate the Screening of Optoelectronic Properties of Metal-Organic Frameworks
    Zhang, Zhaosheng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (05): : 1239 - 1245
  • [2] The carbon footprint of predicting CO 2 storage capacity in metal-organic frameworks within neural networks
    Korolev, Vadim
    Mitrofanov, Artem
    ISCIENCE, 2024, 27 (05)
  • [3] Learnable Histogram: Statistical Context Features for Deep Neural Networks
    Wang, Zhe
    Li, Hongsheng
    Ouyang, Wanli
    Wang, Xiaogang
    COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 246 - 262
  • [4] Tailoring properties of metal-organic frameworks
    Park, Jihye
    Feng, Dawei
    Bao, Zhenan
    Zhou, Hongcai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [5] Mechanical properties of metal-organic frameworks
    Redfern, Louis R.
    Farha, Omar K.
    CHEMICAL SCIENCE, 2019, 10 (46) : 10666 - 10679
  • [6] Topological properties of metal-organic frameworks
    Awais, Hafiz Muhammad
    Jamal, Muhammad
    Javaid, Muhammad
    MAIN GROUP METAL CHEMISTRY, 2020, 43 (01) : 67 - 76
  • [7] Acoustic Properties of Metal-Organic Frameworks
    Li, Zhi-Gang
    Li, Kai
    Dong, Li-Yuan
    Guo, Tian-Meng
    Azeem, Muhammad
    Li, Wei
    Bu, Xian-He
    RESEARCH, 2021, 2021
  • [8] Electronic properties of metal-organic frameworks
    Dinca, Mircea
    Bertrand, Guillaume
    Cozzolino, Anthony F.
    Narayan, Tarun C.
    Sun, Lei
    Shustova, Natalia B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [9] Mechanical properties of metal-organic frameworks
    Shen, Lingjuan
    Masel, Richard I.
    Girolami, Gregory S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [10] Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage
    Manos, George
    Dunne, Lawrence J.
    NANOMATERIALS, 2018, 8 (10):