Device Scheduling for Secure Aggregation in Wireless Federated Learning

被引:0
|
作者
Yan, Na [1 ]
Wang, Kezhi [2 ]
Zhi, Kangda [1 ]
Pan, Cunhua [3 ]
Poor, H. Vincent [4 ]
Chai, Kok Keong [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, England
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 17期
关键词
Security; Privacy; Training; Protection; Internet of Things; Computational modeling; Communication system security; Branch-and-bound (BnB); device scheduling; federated learning (FL); integer nonlinear fractional programming;
D O I
10.1109/JIOT.2024.3405855
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has been widely investigated in academic and industrial fields to resolve the issue of data isolation in the distributed Internet of Things (IoT) while maintaining privacy. However, challenges persist in ensuring adequate privacy and security during the aggregation process. In this article, we investigate device scheduling strategies that ensure the security and privacy of wireless FL. Specifically, we measure the privacy leakage of user data using differential privacy (DP) and assess the security level of the system through the mean-square error security (MSE-security). We commence by deriving the analytical results that reveal the impact of the device scheduling on privacy and security protection, as well as on the learning process. Drawing from these analytical findings, we propose three scheduling policies that can achieve secure aggregation of wireless FL under different cases of channel noise. In particular, we formulate an integer nonlinear fractional programming problem to improve the learning performance while guaranteeing privacy and security of wireless FL. We provide an insightful solution in the closed form to the optimization problem when the model has a high dimension. For the general case, we propose a secure and private aggregation (SPA) algorithm based on the branch-and-bound (BnB) method, which can obtain the optimal solution with low complexity. The effectiveness of the proposed schemes for device selection is validated through simulations.
引用
收藏
页码:28851 / 28862
页数:12
相关论文
共 50 条
  • [21] BalancedSecAgg: Toward Fast Secure Aggregation for Federated Learning
    Masuda, Hiroki
    Kita, Kentaro
    Koizumi, Yuki
    Takemasa, Junji
    Hasegawa, Toru
    IEEE ACCESS, 2024, 12 : 165265 - 165279
  • [22] Robust Secure Aggregation with Lightweight Verification for Federated Learning
    Huang, Chao
    Yao, Yanqing
    Zhang, Xiaojun
    Teng, Da
    Wang, Yingdong
    Zhou, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 582 - 589
  • [23] Cluster-Based Secure Aggregation for Federated Learning
    Kim, Jien
    Park, Gunryeong
    Kim, Miseung
    Park, Soyoung
    ELECTRONICS, 2023, 12 (04)
  • [24] Parameter Obfuscation and Restoration for Secure Federated Learning Aggregation
    Ma, Xiangxiang
    Gong, Linming
    Chen, Jian
    Wang, Daoshun
    International Journal of Network Security, 2024, 26 (01) : 116 - 124
  • [25] WVFL: Weighted Verifiable Secure Aggregation in Federated Learning
    Zhong, Yijian
    Tan, Wuzheng
    Xu, Zhifeng
    Chen, Shixin
    Weng, Jiasi
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19926 - 19936
  • [26] SAFELearning: Secure Aggregation in Federated Learning With Backdoor Detectability
    Zhang, Zhuosheng
    Li, Jiarui
    Yu, Shucheng
    Makaya, Christian
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 3289 - 3304
  • [27] A Secure Aggregation Scheme for Model Update in Federated Learning
    Wang, Baolin
    Hu, Chunqiang
    Liu, Zewei
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 500 - 512
  • [28] LightVeriFL: A Lightweight and Verifiable Secure Aggregation for Federated Learning
    Buyukates, Baturalp
    So, Jinhyun
    Mahdavifar, Hessam
    Avestimehr, Salman
    IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2024, 5 : 285 - 301
  • [29] Secure Aggregation in Heterogeneous Federated Learning for Digital Ecosystems
    Zhang, Jiao
    Li, Xiong
    Gu, Ke
    Liang, Wei
    Li, Kuanching
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 1995 - 2003
  • [30] Communication-Efficient Secure Aggregation for Federated Learning
    Ergun, Irem
    Sami, Hasin Us
    Guler, Basak
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3881 - 3886