LightVeriFL: A Lightweight and Verifiable Secure Aggregation for Federated Learning

被引:1
|
作者
Buyukates, Baturalp [1 ]
So, Jinhyun [2 ]
Mahdavifar, Hessam [3 ,4 ]
Avestimehr, Salman [1 ]
机构
[1] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[2] Daegu Gyeongbuk Inst Sci & Technol, Dept Elect & Engn & Comp Sci, Daegu 42988, South Korea
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[4] Univ Michigan Ann Arbor, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
Federated learning; verifiable machine learning; secure aggregation; machine learning with adversaries; hash; commitment; COMPUTATION;
D O I
10.1109/JSAIT.2024.3391849
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Secure aggregation protects the local models of the users in federated learning, by not allowing the server to obtain any information beyond the aggregate model at each iteration. Naively implementing secure aggregation fails to protect the integrity of the aggregate model in the possible presence of a malicious server forging the aggregation result, which motivates verifiable aggregation in federated learning. Existing verifiable aggregation schemes either have a linear complexity in model size or require time-consuming reconstruction at the server, that is quadratic in the number of users, in case of likely user dropouts. To overcome these limitations, we propose LightVeriFL, a lightweight and communication-efficient secure verifiable aggregation protocol, that provides the same guarantees for verifiability against a malicious server, data privacy, and dropout-resilience as the state-of-the-art protocols without incurring substantial communication and computation overheads. The proposed LightVeriFL protocol utilizes homomorphic hash and commitment functions of constant length, that are independent of the model size, to enable verification at the users. In case of dropouts, LightVeriFL uses a one-shot aggregate hash recovery of the dropped-out users, instead of a one-by-one recovery, making the verification process significantly faster than the existing approaches. Comprehensive experiments show the advantage of LightVeriFL in practical settings.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 50 条
  • [1] Verifiable and Secure Aggregation Scheme for Federated Learning
    Ren Y.
    Fu Y.
    Li Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (03): : 49 - 55
  • [2] SVFLC: Secure and Verifiable Federated Learning With Chain Aggregation
    Li, Ning
    Zhou, Ming
    Yu, Haiyang
    Chen, Yuwen
    Yang, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13125 - 13136
  • [3] WVFL: Weighted Verifiable Secure Aggregation in Federated Learning
    Zhong, Yijian
    Tan, Wuzheng
    Xu, Zhifeng
    Chen, Shixin
    Weng, Jiasi
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19926 - 19936
  • [4] RVFL: Rational Verifiable Federated Learning Secure Aggregation Protocol
    Mu, Xianyu
    Tian, Youliang
    Zhou, Zhou
    Wang, Shuai
    Xiong, Jinbo
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14): : 25147 - 25161
  • [5] Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation
    Yang, Zhen
    Zhou, Ming
    Yu, Haiyang
    Sinnott, Richard O.
    Liu, Huan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (01): : 205 - 222
  • [6] Accountable and Verifiable Secure Aggregation for Federated Learning in IoT Networks
    Yang, Xiaoyi
    Zhao, Yanqi
    Chen, Dian
    Yu, Yong
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE NETWORK, 2022, 36 (05): : 173 - 179
  • [7] Robust Secure Aggregation with Lightweight Verification for Federated Learning
    Huang, Chao
    Yao, Yanqing
    Zhang, Xiaojun
    Teng, Da
    Wang, Yingdong
    Zhou, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 582 - 589
  • [8] VERSA: Verifiable Secure Aggregation for Cross-Device Federated Learning
    Hahn, Changhee
    Kim, Hodong
    Kim, Minjae
    Hur, Junbeom
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (01) : 36 - 52
  • [9] VSAFL: Verifiable and Secure Aggregation With (Poly) Logarithmic Overhead in Federated Learning
    He, Yanlin
    Zhou, Dehua
    Zhang, Qiaohong
    Tan, Ziqi
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (23): : 38552 - 38568
  • [10] VerifyNet: Secure and Verifiable Federated Learning
    Xu, Guowen
    Li, Hongwei
    Liu, Sen
    Yang, Kan
    Lin, Xiaodong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 911 - 926