Simulation-based inference for stochastic gravitational wave background data analysis

被引:6
|
作者
Alvey, James [1 ]
Bhardwaj, Uddipta [2 ,3 ]
Domcke, Valerie [4 ]
Pieroni, Mauro [4 ]
Weniger, Christoph [1 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys Amsterdam, GRAPPA Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Univ Amsterdam, Anton Pannekoek Inst Astron, GRAPPA Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[4] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
基金
荷兰研究理事会; 欧洲研究理事会;
关键词
D O I
10.1103/PhysRevD.109.083008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The next generation of space- and ground-based facilities promise to reveal an entirely new picture of the gravitational wave sky: thousands of galactic and extragalactic binary signals, as well as stochastic gravitational wave backgrounds (SGWBs) of unresolved astrophysical and possibly cosmological signals. These will need to be disentangled to achieve the scientific goals of experiments such as LISA, Einstein Telescope, or Cosmic Explorer. We focus on one particular aspect of this challenge: reconstructing an SGWB from (mock) LISA data. We demonstrate that simulation-based inference (SBI)-specifically truncated marginal neural ratio estimation (TMNRE)-is a promising avenue to overcome some of the technical difficulties and compromises necessary when applying more traditional methods such as Monte Carlo Markov Chains (MCMC). To highlight this, we show that we can reproduce results from traditional methods both for a template- based and agnostic search for an SGWB. Moreover, as a demonstration of the rich potential of SBI, we consider the injection of a population of low signal-to-noise ratio supermassive black hole transient signals into the data. TMNRE can implicitly marginalize over this complicated parameter space, enabling us to directly and accurately reconstruct the stochastic (and instrumental noise) contributions. We publicly release our TMNRE implementation in the form of the code SAQQARA.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Simulation-based optimization: Convergence analysis and statistical inference
    Shapiro, A.
    Communications in Statistics. Part C: Stochastic Models, 1996, 12 (03): : 425 - 454
  • [32] Wave-optics limit of the stochastic gravitational wave background
    Garoffolo, Alice
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [33] Using simulation-based inference with panel data in health economics
    Contoyannis, P
    Jones, AM
    Leon-Gonzalez, R
    HEALTH ECONOMICS, 2004, 13 (02) : 101 - 122
  • [34] Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors
    Wu, Cheng-Jian
    Mandic, Vuk
    Regimbau, Tania
    PHYSICAL REVIEW D, 2013, 87 (04):
  • [35] Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models
    McKinley, Trevelyan J.
    Vernon, Ian
    Andrianakis, Ioannis
    McCreesh, Nicky
    Oakley, Jeremy E.
    Nsubuga, Rebecca N.
    Goldstein, Michael
    White, Richard G.
    STATISTICAL SCIENCE, 2018, 33 (01) : 4 - 18
  • [36] The stochastic gravitational-wave background in the absence of horizons
    Barausse, Enrico
    Brito, Richard
    Cardoso, Vitor
    Dvorkin, Irina
    Pani, Paolo
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (20)
  • [37] Probing the Universe through the stochastic gravitational wave background
    Kuroyanagi, Sachiko
    Chiba, Takeshi
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):
  • [38] Gravitational wave stochastic background in reduced Horndeski theories
    Lobato, Joao C.
    Matos, Isabela S.
    Calvao, Mauricio O.
    Waga, Ioav
    PHYSICAL REVIEW D, 2022, 106 (10)
  • [39] Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background
    Taylor, S. R.
    Mingarelli, C. M. F.
    Gair, J. R.
    Sesana, A.
    Theureau, G.
    Babak, S.
    Bassa, C. G.
    Brem, P.
    Burgay, M.
    Caballero, R. N.
    Champion, D. J.
    Cognard, I.
    Desvignes, G.
    Guillemot, L.
    Hessels, J. W. T.
    Janssen, G. H.
    Karuppusamy, R.
    Kramer, M.
    Lassus, A.
    Lazarus, P.
    Lentati, L.
    Liu, K.
    Oslowski, S.
    Perrodin, D.
    Petiteau, A.
    Possenti, A.
    Purver, M. B.
    Rosado, P. A.
    Sanidas, S. A.
    Smits, R.
    Stappers, B.
    Tiburzi, C.
    van Haasteren, R.
    Vecchio, A.
    Verbiest, J. P. W.
    PHYSICAL REVIEW LETTERS, 2015, 115 (04)
  • [40] Studying the anisotropy of the gravitational wave stochastic background with LISA
    Ungarelli, C
    Vecchio, A
    PHYSICAL REVIEW D, 2001, 64 (12):