Simulation-based inference for stochastic gravitational wave background data analysis

被引:6
|
作者
Alvey, James [1 ]
Bhardwaj, Uddipta [2 ,3 ]
Domcke, Valerie [4 ]
Pieroni, Mauro [4 ]
Weniger, Christoph [1 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys Amsterdam, GRAPPA Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Univ Amsterdam, Anton Pannekoek Inst Astron, GRAPPA Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[4] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
基金
荷兰研究理事会; 欧洲研究理事会;
关键词
D O I
10.1103/PhysRevD.109.083008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The next generation of space- and ground-based facilities promise to reveal an entirely new picture of the gravitational wave sky: thousands of galactic and extragalactic binary signals, as well as stochastic gravitational wave backgrounds (SGWBs) of unresolved astrophysical and possibly cosmological signals. These will need to be disentangled to achieve the scientific goals of experiments such as LISA, Einstein Telescope, or Cosmic Explorer. We focus on one particular aspect of this challenge: reconstructing an SGWB from (mock) LISA data. We demonstrate that simulation-based inference (SBI)-specifically truncated marginal neural ratio estimation (TMNRE)-is a promising avenue to overcome some of the technical difficulties and compromises necessary when applying more traditional methods such as Monte Carlo Markov Chains (MCMC). To highlight this, we show that we can reproduce results from traditional methods both for a template- based and agnostic search for an SGWB. Moreover, as a demonstration of the rich potential of SBI, we consider the injection of a population of low signal-to-noise ratio supermassive black hole transient signals into the data. TMNRE can implicitly marginalize over this complicated parameter space, enabling us to directly and accurately reconstruct the stochastic (and instrumental noise) contributions. We publicly release our TMNRE implementation in the form of the code SAQQARA.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Astrometric Limits on the Stochastic Gravitational Wave Background
    Darling, Jeremy
    Truebenbach, Alexandra E.
    Paine, Jennie
    ASTROPHYSICAL JOURNAL, 2018, 861 (02):
  • [22] Early cosmology and the stochastic gravitational wave background
    Mendes, LE
    Liddle, AR
    PHYSICAL REVIEW D, 1999, 60 (06):
  • [23] Astrometric effects of a stochastic gravitational wave background
    Book, Laura G.
    Flanagan, Eanna E.
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [24] Resonant features in the stochastic gravitational wave background
    Fumagalli, Jacopo
    Renaux-Petel, Sebastien
    Witkowski, Lukas T.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [25] Signal identification of the stochastic gravitational wave background in the Mock LISA Data Challenge
    Cheng, Jun
    Li, En-Kun
    Li, Chang-Sheng
    Yang, Jiang-He
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (11)
  • [26] Disentangling Multiple Stochastic Gravitational Wave Background Sources in PTA Data Sets
    Kaiser, Andrew R.
    Pol, Nihan S.
    McLaughlin, Maura A.
    Chen, Siyuan
    Hazboun, Jeffrey S.
    Kelley, Luke Zoltan
    Simon, Joseph
    Taylor, Stephen R.
    Vigeland, Sarah J.
    Witt, Caitlin A.
    ASTROPHYSICAL JOURNAL, 2022, 938 (02):
  • [27] Optimal strategies for gravitational wave stochastic background searches in pulsar timing data
    Anholm, Melissa
    Ballmer, Stefan
    Creighton, Jolien D. E.
    Price, Larry R.
    Siemens, Xavier
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [28] Benchmarking Simulation-Based Inference
    Lueckmann, Jan-Matthis
    Boelts, Jan
    Greenberg, David S.
    Goncalves, Pedro J.
    Macke, Jakob H.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 343 - +
  • [29] The frontier of simulation-based inference
    Cranmer, Kyle
    Brehmer, Johann
    Louppe, Gilles
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) : 30055 - 30062
  • [30] Sensitivity analysis of simulation-based inference for galaxy clustering
    Modi, Chirag
    Pandey, Shivam
    Ho, Matthew
    Hahn, Changhoon
    Regaldo-Saint Blancard, Bruno
    Wandelt, Benjamin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 536 (01) : 254 - 265