Zero-temperature entanglement membranes in quantum circuits

被引:4
|
作者
Sommers, Grace M. [1 ]
Gopalakrishnan, Sarang [2 ]
Gullans, Michael J. [3 ]
Huse, David A. [1 ]
机构
[1] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Dynamics - Piecewise linear techniques - Quantum entanglement - Quantum optics - Timing circuits;
D O I
10.1103/PhysRevB.110.064311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows" across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various spacetime translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady-state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits and is also present in some special nonstabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Zero-temperature magnetic response of small fullerene molecules at the classical and full quantum limit
    Konstantinidis, N. P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 449 : 55 - 62
  • [32] Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system
    Castelnovo, Claudio
    Chamon, Claudio
    Mudry, Christopher
    Pujol, Pierre
    ANNALS OF PHYSICS, 2007, 322 (04) : 903 - 934
  • [33] Thermal vestige of the zero-temperature jamming transition
    Zhang, Zexin
    Xu, Ning
    Chen, Daniel T. N.
    Yunker, Peter
    Alsayed, Ahmed M.
    Aptowicz, Kevin B.
    Habdas, Piotr
    Liu, Andrea J.
    Nagel, Sidney R.
    Yodh, Arjun G.
    NATURE, 2009, 459 (7244) : 230 - 233
  • [34] ZERO-TEMPERATURE HALL-COEFFICIENT OF AN INSULATOR
    ZHANG, SC
    KIVELSON, S
    LEE, DH
    PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1252 - 1255
  • [35] Zero-temperature glass transition in two dimensions
    Ludovic Berthier
    Patrick Charbonneau
    Andrea Ninarello
    Misaki Ozawa
    Sho Yaida
    Nature Communications, 10
  • [36] Zero-temperature phase diagram of Yukawa bosons
    Osychenko, O. N.
    Astrakharchik, G. E.
    Mazzanti, F.
    Boronat, J.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [37] Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3
    Chen, Lebing
    Mao, Chengjie
    Chung, Jae-Ho
    Stone, Matthew B.
    Kolesnikov, Alexander I.
    Wang, Xiaoping
    Murai, Naoki
    Gao, Bin
    Delaire, Olivier
    Dai, Pengcheng
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [38] PIEZOCERAMIC HF RESONATOR WITH ZERO-TEMPERATURE COEFFICIENT
    WU, L
    LEE, YY
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (11A): : 5024 - 5028
  • [39] Equation of state of zero-temperature quark matter
    Vuorinen, Aleksi
    NUCLEAR PHYSICS A, 2009, 820 : 183C - 186C
  • [40] Zero-temperature properties of RNA secondary structures
    Marinari, Enzo
    Pagnani, Andrea
    Ricci-Tersenghi, Federico
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04): : 1 - 041919