Zero-temperature entanglement membranes in quantum circuits

被引:4
|
作者
Sommers, Grace M. [1 ]
Gopalakrishnan, Sarang [2 ]
Gullans, Michael J. [3 ]
Huse, David A. [1 ]
机构
[1] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Dynamics - Piecewise linear techniques - Quantum entanglement - Quantum optics - Timing circuits;
D O I
10.1103/PhysRevB.110.064311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows" across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various spacetime translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady-state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits and is also present in some special nonstabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Zero-temperature Glauber dynamics on Zd
    Morris, Robert
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (3-4) : 417 - 434
  • [22] Fate of zero-temperature Ising ferromagnets
    Spirin, V
    Krapivsky, PL
    Redner, S
    PHYSICAL REVIEW E, 2001, 63 (03): : 361181 - 361184
  • [23] ZERO-TEMPERATURE SCALING AND SIMULATED ANNEALING
    ETTELAIE, R
    MOORE, MA
    JOURNAL DE PHYSIQUE, 1987, 48 (08): : 1255 - 1263
  • [24] ZERO-TEMPERATURE SCALING AND COMBINATORIAL OPTIMIZATION
    MOORE, MA
    PHYSICAL REVIEW LETTERS, 1987, 58 (17) : 1703 - 1706
  • [25] THEORY OF ZERO-TEMPERATURE POLARON PROPAGATOR
    MYERSON, RJ
    PHYSICAL REVIEW B, 1975, 12 (06): : 2132 - 2137
  • [26] ZERO-TEMPERATURE SOLUTION OF KONDO PROBLEM
    WILSON, KG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 303 - 303
  • [27] Reaching the ground state of a quantum spin glass using a zero-temperature quantum Monte Carlo method
    Das, Arnab
    Chakrabarti, Bikas K.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [28] Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3
    Lebing Chen
    Chengjie Mao
    Jae-Ho Chung
    Matthew B. Stone
    Alexander I. Kolesnikov
    Xiaoping Wang
    Naoki Murai
    Bin Gao
    Olivier Delaire
    Pengcheng Dai
    Nature Communications, 13
  • [29] Absence of actual plateaus in zero-temperature magnetization curves of quantum spin clusters and chains
    Ohanyan, Vadim
    Rojas, Onofre
    Strecka, Jozef
    Bellucci, Stefano
    PHYSICAL REVIEW B, 2015, 92 (21)
  • [30] Zero-temperature quantum disorder in spill systems by competition between dimer and plaquette bonds
    Richter, J
    Ivanov, NB
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 1919 - 1920