Zero-temperature entanglement membranes in quantum circuits

被引:4
|
作者
Sommers, Grace M. [1 ]
Gopalakrishnan, Sarang [2 ]
Gullans, Michael J. [3 ]
Huse, David A. [1 ]
机构
[1] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Dynamics - Piecewise linear techniques - Quantum entanglement - Quantum optics - Timing circuits;
D O I
10.1103/PhysRevB.110.064311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows" across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various spacetime translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady-state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits and is also present in some special nonstabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ZERO-TEMPERATURE PROPERTIES OF THE QUANTUM XY MODEL WITH ANISOTROPY
    HAMER, CJ
    OITMAA, J
    ZHENG, WH
    PHYSICAL REVIEW B, 1991, 43 (13): : 10789 - 10796
  • [2] Zero-temperature limit of thermodynamic quantum master equations
    Oettinger, Hans Christian
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [3] A ZERO-TEMPERATURE QUANTUM MONTE CARLO ALGORITHM AND QUANTUM SPIN GLASSES
    Das, Arnab
    Chandra, Anjan K.
    Chakrabarti, Bikas K.
    COMPUTING IN SCIENCE & ENGINEERING, 2010, 12 (01) : 64 - 72
  • [4] Loss of quantum coherence in a system coupled to a zero-temperature environment
    Ratchov, A
    Faure, F
    Hekking, FWJ
    EUROPEAN PHYSICAL JOURNAL B, 2005, 46 (04): : 519 - 528
  • [5] ZERO-TEMPERATURE PROPERTIES OF QUANTUM SPIN SYSTEMS IN 2 DIMENSIONS
    BETTS, DD
    MIYASHITA, S
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (12) : 1410 - 1418
  • [6] Loss of quantum coherence in a system coupled to a zero-temperature environment
    A. Ratchov
    F. Faure
    F. W.J. Hekking
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 46 : 519 - 528
  • [7] Zero-temperature properties of the quantum dimer model on the triangular lattice
    Ralko, A
    Ferrero, M
    Becca, F
    Ivanov, D
    Mila, F
    PHYSICAL REVIEW B, 2005, 71 (22):
  • [8] Anomalous Enhancement of Entanglement Entropy in Nonequilibrium Steady States Driven by Zero-Temperature Reservoirs
    Hakoshima, Hideaki
    Shimizu, Akira
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (02)
  • [9] Zero-temperature quantum annealing bottlenecks in the spin-glass phase
    Sergey Knysh
    Nature Communications, 7
  • [10] MODELS FOR ZERO-TEMPERATURE STARS
    HAMADA, T
    SALPETER, EE
    ASTROPHYSICAL JOURNAL, 1961, 134 (03): : 683 - 698