Robustness of radiomics features on 0.35 T magnetic resonance imaging for magnetic resonance-guided radiotherapy

被引:1
|
作者
Michalet, Morgan [1 ,2 ]
Valenzuela, Gladis [2 ]
Debuire, Pierre [1 ]
Riou, Olivier [1 ,2 ]
Azria, David [1 ,2 ]
Nougaret, Stephanie [2 ,3 ]
Tardieu, Marion [2 ]
机构
[1] Inst Canc Montpellier, Federat Univ Oncol Radiotherapie Occitanie Mediter, INSERM U1194 IRCM, 208 Ave Apothicaires, F-34298 Montpellier, France
[2] Univ Montpellier, ICM, INSERM, IRCM, 208 Ave Apothicaires, F-34298 Montpellier, France
[3] Inst Canc Montpellier, Serv Imagerie Med, 208 Ave Apothicaires, F-34298 Montpellier, France
关键词
Radiomics; Robustness; MR-guided radiotherapy; SYSTEM;
D O I
10.1016/j.phro.2024.100613
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: MR-guided radiotherapy adds the precision of magnetic resonance imaging (MRI) to the therapeutic benefits of a linear accelerator. Prior to each therapeutic session, an MRI generates a significant volume of imaging data ripe for analysis. Radiomics stands at the forefront of medical imaging and oncology research, dedicated to mining quantitative imaging attributes to forge predictive models. However, the robustness of these models is often challenged. Materials and methods: To assess the robustness of feature extraction, we conducted reproducibility studies using a 0.35 T MR-linac system, employing both a specialized phantom and patient-derived images, focusing on cases of pancreatic cancer. We extracted shape-based, first-order and textural features from patient-derived images and only first-order and textural features from phantom-derived images. The impact of the delay between simulation and first fraction images was also assessed with an equivalence test. Results: From 107 features evaluated, 58 (54 %) were considered as non-reproducible: 18 were uniformly inconsistent across both phantom and patient images, 9 were specific to phantom-based analysis, and 31 to patient-derived data. Conclusion: Our findings show that a significant proportion of radiomic features extracted from this dual dataset were unreliable. It is essential to discard these non-reproducible elements to refine and enhance radiomic model development, particularly for MR-guided radiotherapy in pancreatic cancer.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Magnetic Resonance-guided Radiotherapy - Can We Justify More Expensive Technology?
    Tree, A. C.
    Huddart, R.
    Choudhury, A.
    CLINICAL ONCOLOGY, 2018, 30 (11) : 677 - 679
  • [42] Feasibility of magnetic resonance-guided stereotactic ablative body radiotherapy of liver cancer
    Picton, M.
    Batumalai, V.
    Crawford, D.
    Pagulayan, C.
    Hogan, L.
    Jelen, U.
    Loo, C.
    Dunkerley, N.
    Geddes, L.
    Sampaio, S.
    Heinke, M.
    Twentyman, T.
    Jameson, M.
    de Leon, J.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S298 - S299
  • [43] Accelerating 4D image reconstruction for magnetic resonance-guided radiotherapy
    Lecoeur, Bastien
    Barbone, Marco
    Gough, Jessica
    Oelfke, Uwe
    Luk, Wayne
    Gaydadjiev, Georgi
    Wetscherek, Andreas
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 27
  • [44] Magnetic Resonance-guided stereotactic radiotherapy for hepatic metastases - die MAESTRO Studie
    Hoegen, P.
    Dreher, C.
    Tonndorf-Martini, E.
    Koerber, S. A.
    Schlaich, F.
    Weykamp, F.
    Klueter, S.
    Spindeldreier, C. K.
    Schrenk, O.
    Buesch, C.
    Krisam, J.
    Bickelhaupt, S.
    Schlemmer, H. -P
    Debus, J.
    Hoerner-Rieber, J.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (SUPPL 1) : S170 - S170
  • [45] Online adaptive radiation magnetic resonance-guided radiotherapy: current implementation in Spain
    Deben Mendez, Beatriz
    Navarro-Domenech, Inmaculada
    Rosel Aller, Rafael
    Huertas Martinez, Concepcion
    Ferrer Gracia, Carlos Luis
    Arroyo Corral, Patricia
    Sanchez Vilela, Beatriz
    Lozano Serrano, Antonio
    Camacho Martinez, Daniel
    Gonzalez Del Portillo, Elisabet
    Rodriguez Roldan, Marta
    Garrido Botella, Maria Isabel
    Ocanto Martinez, Abrahams Alexis
    Gonzalez Cantero, Mercedes
    Teja Ubach, Macarena
    Garcia Torres, Celia
    Morera Lopez, Rosa Maria
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S1941 - S1943
  • [46] Radiomics in Magnetic Resonance Imaging for prediction of radiotherapy outcomes in cervical cancer
    Thanamitsomboon, N.
    Kosaisawe, N.
    Thephamongkhol, K.
    Dankulchai, P.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S184 - S184
  • [47] Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy
    Yang, Fei
    Ford, John C.
    Dogan, Nesrin
    Padgett, Kyle R.
    Breto, Adrian L.
    Abramowitz, Matthew C.
    Dal Pra, Alan
    Pollack, Alan
    Stoyanova, Radka
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2018, 7 (03) : 445 - 458
  • [48] Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment
    Saeed, Maythem
    Krug, Roland
    Do, Loi
    Hetts, Steven W.
    Wilson, Mark W.
    WORLD JOURNAL OF RADIOLOGY, 2016, 8 (03): : 298 - 307
  • [49] Magnetic Resonance Imaging of the Cardiac Venous System and Magnetic Resonance-Guided Intubation of the Coronary Sinus in Swine A Feasibility Study
    Neizel, Mirja
    Kraemer, Nils
    Schuette, Adrian
    Schnackenburg, Bernhard
    Krueger, Sascha
    Kelm, Malte
    Guenther, Rolf W.
    Kuehl, Harald P.
    Krombach, Gabriele A.
    INVESTIGATIVE RADIOLOGY, 2010, 45 (08) : 502 - 506
  • [50] Feasibility of delta radiomics-based pCR prediction for rectal cancer patients treated with magnetic resonance-guided adaptive radiotherapy
    Wu, Junxiang
    Xiao, Juan
    Li, Yihong
    Wu, Fan
    Peng, Qian
    Li, Churong
    Tang, Bin
    Orlandini, Lucia Clara
    FRONTIERS IN ONCOLOGY, 2023, 13