Robustness of radiomics features on 0.35 T magnetic resonance imaging for magnetic resonance-guided radiotherapy

被引:1
|
作者
Michalet, Morgan [1 ,2 ]
Valenzuela, Gladis [2 ]
Debuire, Pierre [1 ]
Riou, Olivier [1 ,2 ]
Azria, David [1 ,2 ]
Nougaret, Stephanie [2 ,3 ]
Tardieu, Marion [2 ]
机构
[1] Inst Canc Montpellier, Federat Univ Oncol Radiotherapie Occitanie Mediter, INSERM U1194 IRCM, 208 Ave Apothicaires, F-34298 Montpellier, France
[2] Univ Montpellier, ICM, INSERM, IRCM, 208 Ave Apothicaires, F-34298 Montpellier, France
[3] Inst Canc Montpellier, Serv Imagerie Med, 208 Ave Apothicaires, F-34298 Montpellier, France
关键词
Radiomics; Robustness; MR-guided radiotherapy; SYSTEM;
D O I
10.1016/j.phro.2024.100613
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: MR-guided radiotherapy adds the precision of magnetic resonance imaging (MRI) to the therapeutic benefits of a linear accelerator. Prior to each therapeutic session, an MRI generates a significant volume of imaging data ripe for analysis. Radiomics stands at the forefront of medical imaging and oncology research, dedicated to mining quantitative imaging attributes to forge predictive models. However, the robustness of these models is often challenged. Materials and methods: To assess the robustness of feature extraction, we conducted reproducibility studies using a 0.35 T MR-linac system, employing both a specialized phantom and patient-derived images, focusing on cases of pancreatic cancer. We extracted shape-based, first-order and textural features from patient-derived images and only first-order and textural features from phantom-derived images. The impact of the delay between simulation and first fraction images was also assessed with an equivalence test. Results: From 107 features evaluated, 58 (54 %) were considered as non-reproducible: 18 were uniformly inconsistent across both phantom and patient images, 9 were specific to phantom-based analysis, and 31 to patient-derived data. Conclusion: Our findings show that a significant proportion of radiomic features extracted from this dual dataset were unreliable. It is essential to discard these non-reproducible elements to refine and enhance radiomic model development, particularly for MR-guided radiotherapy in pancreatic cancer.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Magnetic Resonance-Guided Prostate Biopsy
    Dianat, S. Saeid
    Carter, H. Ballentine
    Macura, Katarzyna J.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2015, 23 (04) : 621 - +
  • [22] A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners
    Tsekos, NV
    Özcan, A
    Christoforou, E
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (06): : 972 - 980
  • [23] Stereotactic magnetic resonance-guided online adaptive radiotherapy in kidney oligometastases
    Laouiti, Mohamed
    Mazouni, Zohra
    Salati, Emanuela
    Durigova, Anna
    RADIOTHERAPY AND ONCOLOGY, 2024, 197 : S295 - S296
  • [24] Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach
    Luca Boldrini
    Davide Cusumano
    Giuditta Chiloiro
    Calogero Casà
    Carlotta Masciocchi
    Jacopo Lenkowicz
    Francesco Cellini
    Nicola Dinapoli
    Luigi Azario
    Stefania Teodoli
    Maria Antonietta Gambacorta
    Marco De Spirito
    Vincenzo Valentini
    La radiologia medica, 2019, 124 : 145 - 153
  • [25] Feasibility of magnetic resonance-guided adaptive post-prostatectomy radiotherapy
    Hassan, S.
    Jameson, M.
    Batumalai, V.
    Crawford, D.
    Moutrie, Z.
    Hogan, L.
    Loo, C.
    Picton, M.
    Pagulayan, C.
    Jelen, U.
    Alvares, S.
    Heinke, M.
    Sampaio, S.
    Simon, K.
    Twentyman, T.
    Dwivedi, N.
    de Leon, J.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1166 - S1167
  • [26] Robustness of Radiomics Features to Varying Segmentation Algorithms in Magnetic Resonance Images
    Cairone, Luca
    Benfante, Viviana
    Bignardi, Samuel
    Marinozzi, Franco
    Yezzi, Anthony
    Tuttolomondo, Antonino
    Salvaggio, Giuseppe
    Bini, Fabiano
    Comelli, Albert
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022 WORKSHOPS, PT I, 2022, 13373 : 462 - 472
  • [27] In room magnetic resonance imaging guided radiotherapy (MRIgRT)
    Lagendijk, J
    Raaymakers, B
    van der Heide, U
    Overweg, J
    Brown, K
    Bakker, C
    Raaijmakers, A
    Vulpen, M
    Welleweerd, J
    Jürgenliemk-Schulz, I
    MEDICAL PHYSICS, 2005, 32 (06) : 2067 - 2067
  • [28] Delta radiomics for rectal cancer response prediction with hybrid 0.35T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach
    Boldrini, Luca
    Cusumano, Davide
    Chiloiro, Giuditta
    Casa, Calogero
    Masciocchi, Carlotta
    Lenkowicz, Jacopo
    Cellini, Francesco
    Dinapoli, Nicola
    Azario, Luigi
    Teodoli, Stefania
    Gambacorta, Maria Antonietta
    De Spirito, Marco
    Valentini, Vincenzo
    RADIOLOGIA MEDICA, 2019, 124 (02): : 145 - 153
  • [29] Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction
    Fajemisin, Jesutofunmi Ayo
    Gonzalez, Glebys
    Rosenberg, Stephen A.
    Ullah, Ghanim
    Redler, Gage
    Latifi, Kujtim
    Moros, Eduardo G.
    El Naqa, Issam
    TOMOGRAPHY, 2024, 10 (09) : 1439 - 1454
  • [30] An efficient chemical shift imaging scheme for magnetic resonance-guided neurosurgery
    Liu, HY
    Hall, WA
    Martin, AJ
    Truwit, CL
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 14 (01) : 1 - 7