Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks

被引:0
|
作者
Khalid, Md Meraj [1 ]
Schenkendorf, Rene [1 ]
机构
[1] Harz Univ Appl Sci, Automat & Comp Sci Dept, Wernigerode, Germany
关键词
manufacturing systems; physics-informed neural network; partial differential equations; distributed parameter system; parameter sensitivities; uncertainty quantification;
D O I
10.1007/978-3-031-57496-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we explore the application of Physics-Informed Neural Networks (PINNs) in parameter identification for continuum models of manufacturing systems. Although these models are invaluable for production planning at the factory level, the reliability of model-based decision-making strategies hinges significantly on accurate parameter estimation. We emphasize the distinct differences between PINNs and conventional parameter identification methods, particularly in terms of parameter sensitivities and uncertainty quantification. Our findings reveal that the PINN-based identification framework results in more significant parameter uncertainties. Consequently, this prompts us to discuss the implications for experimental designs, system identification, and the pivotal role of smart data.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [31] Physics-informed recurrent neural networks and hyper-parameter optimization for dynamic process systems
    Asrav, Tuse
    Aydin, Erdal
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 173
  • [32] Thermodynamically consistent physics-informed neural networks for hyperbolic systems
    Patel, Ravi G.
    Manickam, Indu
    Trask, Nathaniel A.
    Wood, Mitchell A.
    Lee, Myoungkyu
    Tomas, Ignacio
    Cyr, Eric C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [33] Physics-Informed Graph Neural Networks for Water Distribution Systems
    Ashraf, Inaam
    Strotherm, Janine
    Hermes, Luca
    Hammer, Barbara
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 21905 - 21913
  • [34] Data Assimilation and Parameter Identification for Water Waves Using the Nonlinear Schrödinger Equation and Physics-Informed Neural Networks
    Ehlers, Svenja
    Wagner, Niklas A.
    Scherzl, Annamaria
    Klein, Marco
    Hoffmann, Norbert
    Stender, Merten
    FLUIDS, 2024, 9 (10)
  • [35] Coupling physics-informed neural networks and constitutive relation error concept to solve a parameter identification problem
    Wei, Y.
    Serra, Q.
    Lubineau, G.
    Florentin, E.
    COMPUTERS & STRUCTURES, 2023, 283
  • [36] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    Acoustical Science and Technology, 45 (06): : 333 - 336
  • [37] Forecasting Buoy Observations Using Physics-Informed Neural Networks
    Schmidt, Austin B.
    Pokhrel, Pujan
    Abdelguerfi, Mahdi
    Ioup, Elias
    Dobson, David
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (03) : 821 - 840
  • [38] Using physics-informed neural networks to compute quasinormal modes
    Cornell, Alan S.
    Ncube, Anele
    Harmsen, Gerhard
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [39] PINNeik: Eikonal solution using physics-informed neural networks
    bin Waheed, Umair
    Haghighat, Ehsan
    Alkhalifah, Tariq
    Song, Chao
    Hao, Qi
    COMPUTERS & GEOSCIENCES, 2021, 155
  • [40] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2024, 45 (06) : 333 - 336