Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks

被引:0
|
作者
Khalid, Md Meraj [1 ]
Schenkendorf, Rene [1 ]
机构
[1] Harz Univ Appl Sci, Automat & Comp Sci Dept, Wernigerode, Germany
关键词
manufacturing systems; physics-informed neural network; partial differential equations; distributed parameter system; parameter sensitivities; uncertainty quantification;
D O I
10.1007/978-3-031-57496-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we explore the application of Physics-Informed Neural Networks (PINNs) in parameter identification for continuum models of manufacturing systems. Although these models are invaluable for production planning at the factory level, the reliability of model-based decision-making strategies hinges significantly on accurate parameter estimation. We emphasize the distinct differences between PINNs and conventional parameter identification methods, particularly in terms of parameter sensitivities and uncertainty quantification. Our findings reveal that the PINN-based identification framework results in more significant parameter uncertainties. Consequently, this prompts us to discuss the implications for experimental designs, system identification, and the pivotal role of smart data.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [21] Parameter identification for a damage phase field model using a physics-informed neural network
    Carlos J.G.Rojas
    Jos L.Boldrini
    Marco L.Bittencourt
    Theoretical & Applied Mechanics Letters, 2023, 13 (03) : 229 - 246
  • [22] A physics-informed neural networks framework for model parameter identification of beam-like structures
    Teloli, Rafael de O.
    Tittarelli, Roberta
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Le Moal, Patrice
    Ouisse, Morvan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [23] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [24] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [25] Predicting Voltammetry Using Physics-Informed Neural Networks
    Chen, Haotian
    Katelhon, Enno
    Compton, Richard G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (02): : 536 - 543
  • [26] Discontinuity Computing Using Physics-Informed Neural Networks
    Li Liu
    Shengping Liu
    Hui Xie
    Fansheng Xiong
    Tengchao Yu
    Mengjuan Xiao
    Lufeng Liu
    Heng Yong
    Journal of Scientific Computing, 2024, 98
  • [27] A Framework for Parameter Estimation and Uncertainty Quantification in Systems Biology Using Quantile Regression and Physics-Informed Neural Networks
    Hu, Haoran
    Cheng, Qianru
    Guo, Shuli
    Wen, Huifang
    Zhang, Jing
    Song, Yongqi
    Wang, Kaiqun
    Huang, Di
    Zhang, Hui
    Zhang, Chaofeng
    Shan, Yanhu
    BULLETIN OF MATHEMATICAL BIOLOGY, 2025, 87 (05)
  • [28] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [30] Physics-Informed Neural Networks for System Identification of Structural Systems with a Multiphysics Damping Model
    Liu, Tong
    Meidani, Hadi
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (10)