Scenario-aware clustered federated learning for vehicle trajectory prediction with non-IID data

被引:0
|
作者
Tao, Liang [1 ]
Cui, Yangguang [1 ]
Zhang, Xiaodong [2 ]
Shen, Wenfeng [1 ]
Lu, Weijia [2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] United Automot Elect Syst Co, Shanghai, Peoples R China
关键词
Vehicle trajectory prediction; federated learning; deep learning; intelligent vehicles; intelligent transportation systems;
D O I
10.1177/09544070241272761
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In recent years, Federated Learning (FL) has attracted much attention in Vehicle Trajectory Prediction (VTP) as it can resolve the critical issues of insufficient data, data privacy, and training efficiency. However, compared with centralized training, the model trained by FL may have insufficient prediction performance. This important issue comes from a statistical heterogeneity distribution of the local data in the participating clients, that is, non-IID. Therefore, this paper introduces a Clustered Federated Learning (CFL) approach for the VTP model to mitigate the influence of non-IID data. The proposed approach consists of federated trajectory clustering and federated VTP model training. In federated trajectory clustering, the optimal trajectory scenario discriminator is produced using federated K-means clustering without direct access to private data. In the federated VTP model training, multiple VTP models for specific trajectory scenarios are trained to deal with the influence of non-IID data. Experimental results reveal that our approach outperforms the state-of-the-art FL method on both NGSIM and HighD datasets, achieving up to 13.82% convergence acceleration and 12.47% RMSE reduction.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [42] FedRL: Improving the Performance of Federated Learning with Non-IID Data
    Kang, Yufei
    Li, Baochun
    Zeyl, Timothy
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3023 - 3028
  • [43] Feature Matching Data Synthesis for Non-IID Federated Learning
    Li, Zijian
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9352 - 9367
  • [44] Is Non-IID Data a Threat in Federated Online Learning to Rank?
    Wang, Shuyi
    Zuccon, Guido
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2801 - 2813
  • [45] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [46] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [47] FedAP: Adaptive Personalization in Federated Learning for Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Boschmann, Johann
    Gaus, Richard
    Frantzen, Maximilian
    Navab, Nassir
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 17 - 27
  • [48] A Comprehensive Study on Personalized Federated Learning with Non-IID Data
    Yu, Menghang
    Zheng, Zhenzhe
    Li, Qinya
    Wu, Fan
    Zheng, Jiaqi
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 40 - 49
  • [49] Hierarchical Federated Learning with Adaptive Clustering on Non-IID Data
    Tian, Yuqing
    Zhang, Zhaoyang
    Yang, Zhaohui
    Jin, Richeng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 627 - 632
  • [50] Privacy-Enhanced Federated Learning for Non-IID Data
    Tan, Qingjie
    Wu, Shuhui
    Tao, Yuanhong
    MATHEMATICS, 2023, 11 (19)