Scenario-aware clustered federated learning for vehicle trajectory prediction with non-IID data

被引:0
|
作者
Tao, Liang [1 ]
Cui, Yangguang [1 ]
Zhang, Xiaodong [2 ]
Shen, Wenfeng [1 ]
Lu, Weijia [2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] United Automot Elect Syst Co, Shanghai, Peoples R China
关键词
Vehicle trajectory prediction; federated learning; deep learning; intelligent vehicles; intelligent transportation systems;
D O I
10.1177/09544070241272761
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In recent years, Federated Learning (FL) has attracted much attention in Vehicle Trajectory Prediction (VTP) as it can resolve the critical issues of insufficient data, data privacy, and training efficiency. However, compared with centralized training, the model trained by FL may have insufficient prediction performance. This important issue comes from a statistical heterogeneity distribution of the local data in the participating clients, that is, non-IID. Therefore, this paper introduces a Clustered Federated Learning (CFL) approach for the VTP model to mitigate the influence of non-IID data. The proposed approach consists of federated trajectory clustering and federated VTP model training. In federated trajectory clustering, the optimal trajectory scenario discriminator is produced using federated K-means clustering without direct access to private data. In the federated VTP model training, multiple VTP models for specific trajectory scenarios are trained to deal with the influence of non-IID data. Experimental results reveal that our approach outperforms the state-of-the-art FL method on both NGSIM and HighD datasets, achieving up to 13.82% convergence acceleration and 12.47% RMSE reduction.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] A Survey of Federated Learning on Non-IID Data
    HAN Xuming
    GAO Minghan
    WANG Limin
    HE Zaobo
    WANG Yanze
    ZTECommunications, 2022, 20 (03) : 17 - 26
  • [12] Non-IID Federated Learning
    Cao, Longbing
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (02) : 14 - 15
  • [13] FLIS: Clustered Federated Learning Via Inference Similarity for Non-IID Data Distribution
    Morafah, Mahdi
    Vahidian, Saeed
    Wang, Weijia
    Lin, Bill
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2023, 4 : 109 - 120
  • [14] A Clustered Federated Learning Method of User Behavior Analysis Based on Non-IID Data
    Zhang, Jianfei
    Li, Zhongxin
    ELECTRONICS, 2023, 12 (07)
  • [15] Differentially private federated learning with non-IID data
    Cheng, Shuyan
    Li, Peng
    Wang, Ruchuan
    Xu, He
    COMPUTING, 2024, 106 (07) : 2459 - 2488
  • [16] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [17] Adaptive Federated Deep Learning With Non-IID Data
    Zhang, Ze-Hui
    Li, Qing-Dan
    Fu, Yao
    He, Ning-Xin
    Gao, Tie-Gang
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (12): : 2493 - 2506
  • [18] A Novel Approach for Federated Learning with Non-IID Data
    Nguyen, Hiep
    Warrier, Harikrishna
    Gupta, Yogesh
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 62 - 67
  • [19] Federated Dictionary Learning from Non-IID Data
    Gkillas, Alexandros
    Ampeliotis, Dimitris
    Berberidis, Kostas
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [20] EFL: ELASTIC FEDERATED LEARNING ON NON-IID DATA
    Ma, Zichen
    Lu, Yu
    Li, Wenye
    Cui, Shuguang
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199