Experimentally validated fractional-order PI with anti-windup for fractional-order plus time delay processes

被引:1
|
作者
Meena, Rammurti [1 ]
Chakraborty, Sudipta [1 ]
Pal, Vipin Chandra [1 ]
Lala, Himadri [2 ]
机构
[1] Natl Inst Technol Silchar, Silchar 788010, Assam, India
[2] Vellore Inst Technol, Vellore 632014, India
关键词
Fractional-order control; FOPI anti-windup controller; Target loop; Maximum sensitivity; Phase margin; Time delay; CONTROLLER-DESIGN; IMC CONTROLLER; MODEL;
D O I
10.1007/s40435-024-01483-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinearity constraints are inherent in all physical systems and can impact the system output. The windup issue occurs when actuators reach their limits, causing a disparity between the system input and the controller output. To eliminate or minimize the impact of saturation, controllers are designed with anti-windup techniques. This paper proposes a new target loop-based simple analytical design of a fractional-order proportional integral (FOPI) anti-windup controller for non-integer-order (NIO) processes with time delay. Explicit tuning rules in terms of plant parameters are established to meet user-defined criteria such as phase margin (phi m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _\text {m}$$\end{document}) and maximum sensitivity (Ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M_\text {s})$$\end{document}. To check the performance and robustness of the proposed control law, case studies are conducted and compared with recently developed control laws. The robustness of the proposed controller is examined with parameter variations. Lastly, real-time validation of the proposed control approach is carried out in a two-tank level loop.
引用
收藏
页码:4232 / 4243
页数:12
相关论文
共 50 条
  • [31] Pole placement with fractional-order PIλ controllers for time-delay systems
    Lei, Shu-Ying
    Wang, De-Jin
    Fan, Yi-Jun
    Kongzhi yu Juece/Control and Decision, 2015, 30 (06): : 1131 - 1134
  • [32] Design of Fuzzy Fractional-order PI plus PD Controller
    Tajjudin, Mazidah
    Ishak, Norlela
    Rahiman, Mohd. Hezri Fazalul
    Adnan, Ramli
    2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 253 - 257
  • [33] Robust stabilization of interval fractional-order plants with an interval time delay by fractional-order proportional integral derivative controllers
    Ghorbani, Majid
    Tepljakov, Aleksei
    Petlenkov, Eduard
    IET CONTROL THEORY AND APPLICATIONS, 2024, 18 (05): : 614 - 625
  • [34] Robust Stability Analysis of Interval Fractional-Order Plants with Interval Time Delay and General Form of Fractional-Order Controllers
    Ghorbani, Majid
    Tavakoli-Kakhki, Mahsan
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Farnam, Arash
    Crevecoeur, Guillaume
    IEEE Control Systems Letters, 2022, 6 : 1268 - 1273
  • [35] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [36] Robust Stability Analysis of Interval Fractional-Order Plants With Interval Time Delay and General Form of Fractional-Order Controllers
    Ghorbani, Majid
    Tavakoli-Kakhki, Mahsan
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Farnam, Arash
    Crevecoeur, Guillaume
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1268 - 1273
  • [37] Stabilization Criterion of Fractional-Order PDμ Controllers for Interval Fractional-Order Plants with One Fractional-Order Term
    Gao, Zhe
    Cai, Xiaowu
    Zhai, Lirong
    Liu, Ting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10424 - 10430
  • [38] Fractional-Order Models for Biochemical Processes
    Dulf, Eva-H
    Vodnar, Dan C.
    Danku, Alex
    Muresan, Cristina-, I
    Crisan, Ovidiu
    FRACTAL AND FRACTIONAL, 2020, 4 (02) : 1 - 12
  • [39] Fractional order modelling of fractional-order holds
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 789 - 796
  • [40] Fractional order modelling of fractional-order holds
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2012, 70 : 789 - 796