Experimentally validated fractional-order PI with anti-windup for fractional-order plus time delay processes

被引:1
|
作者
Meena, Rammurti [1 ]
Chakraborty, Sudipta [1 ]
Pal, Vipin Chandra [1 ]
Lala, Himadri [2 ]
机构
[1] Natl Inst Technol Silchar, Silchar 788010, Assam, India
[2] Vellore Inst Technol, Vellore 632014, India
关键词
Fractional-order control; FOPI anti-windup controller; Target loop; Maximum sensitivity; Phase margin; Time delay; CONTROLLER-DESIGN; IMC CONTROLLER; MODEL;
D O I
10.1007/s40435-024-01483-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinearity constraints are inherent in all physical systems and can impact the system output. The windup issue occurs when actuators reach their limits, causing a disparity between the system input and the controller output. To eliminate or minimize the impact of saturation, controllers are designed with anti-windup techniques. This paper proposes a new target loop-based simple analytical design of a fractional-order proportional integral (FOPI) anti-windup controller for non-integer-order (NIO) processes with time delay. Explicit tuning rules in terms of plant parameters are established to meet user-defined criteria such as phase margin (phi m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _\text {m}$$\end{document}) and maximum sensitivity (Ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M_\text {s})$$\end{document}. To check the performance and robustness of the proposed control law, case studies are conducted and compared with recently developed control laws. The robustness of the proposed controller is examined with parameter variations. Lastly, real-time validation of the proposed control approach is carried out in a two-tank level loop.
引用
收藏
页码:4232 / 4243
页数:12
相关论文
共 50 条
  • [21] Robust stabilizing regions of fractional-order PDμ controllers of time-delay fractional-order systems
    Gao, Zhe
    Yan, Ming
    Wei, Junxiu
    JOURNAL OF PROCESS CONTROL, 2014, 24 (01) : 37 - 47
  • [22] Design of Fractional-Order Lag Network and Fractional-Order PI Controller for a Robotic Manipulator
    Mandic, Petar D.
    Lino, Paolo
    Maione, Guido
    Lazarevic, Mihailo P.
    Sekara, Tomislav B.
    IFAC PAPERSONLINE, 2020, 53 (02): : 3669 - 3674
  • [23] Synthesis of Fractional-order PI Controllers and Fractional-order Filters for Industrial Electrical Drives
    Lino, Paolo
    Maione, Guido
    Stasi, Silvio
    Padula, Fabrizio
    Visioli, Antonio
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (01) : 58 - 69
  • [24] Synthesis of Fractional-order PI Controllers and Fractional-order Filters for Industrial Electrical Drives
    Paolo Lino
    Guido Maione
    Silvio Stasi
    Fabrizio Padula
    Antonio Visioli
    IEEE/CAA Journal of Automatica Sinica, 2017, 4 (01) : 58 - 69
  • [25] Stability Boundary Locus For Unstable Processes with Time Delay Under Fractional-order PI Controllers
    Cokmez, Erdal
    Kaya, Ibrahim
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,
  • [26] Design of fractional-order IMC for nonlinear chemical processes with time delay
    Saikumar, Gorakala
    Sahu, Kapil Kumar
    Saha, Prabirkumar
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (04) : 1797 - 1807
  • [27] Design of fractional-order IMC for nonlinear chemical processes with time delay
    Gorakala Saikumar
    Kapil Kumar Sahu
    Prabirkumar Saha
    International Journal of Dynamics and Control, 2023, 11 : 1797 - 1807
  • [28] An analytical method on the stabilization of fractional-order plants with one fractional-order term and interval uncertainties using fractional-order PIλ Dμ controllers
    Gao, Zhe
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (15) : 4133 - 4142
  • [29] A novel 2-DOF fractional-order PIλ - Dμ controller with inherent anti-windup capability for a magnetic levitation system
    Pandey, Sandeep
    Dwivedi, Prakash
    Junghare, A. S.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 79 : 158 - 171
  • [30] Anti-windup scheme-based control for fractional-order systems subject to actuator and sensor saturation
    Sakthivel, R.
    Sweetha, S.
    Mohanapriya, S.
    Antony Crispin Sweety, C.
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2024, 53 (04) : 485 - 508