Predicting gross domestic product using the ensemble machine learning method

被引:0
|
作者
Adewale, M. D. [1 ]
Ebem, D. U. [2 ]
Awodele, O. [3 ]
Sambo-Magaji, A. [4 ]
Aggrey, E. M. [1 ]
Okechalu, E. A. [1 ]
Donatus, R. E. [1 ]
Olayanju, K. A. [1 ]
Owolabi, A. F. [1 ]
Oju, J. U. [1 ]
Ubadike, O. C. [1 ]
Otu, G. A. [1 ]
Muhammed, U. I. [1 ]
Danjuma, O. R. [5 ]
Oluyide, O. P. [1 ]
机构
[1] Natl Open Univ Nigeria, Afr Ctr Excellence Technol Enhanced Learning, Lagos, Nigeria
[2] Univ Nigeria, Dept Comp Sci, Nsukka, Nigeria
[3] Babcock Univ, Dept Comp Sci, Ilishan Remo, Ogun, Nigeria
[4] Natl Informat Technol Dev Agcy, Digital Literacy & Capac Dev Dept, Abuja, Nigeria
[5] Obafemi Awolowo Univ, Dept Management & Accounting, Ife, Nigeria
来源
关键词
GDP; Electricity access; Healthcare Spending; Life Expectancy; Machine Learning; Random Forest Regressor;
D O I
10.1016/j.sasc.2024.200132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The need for more accurate GDP predictions in Nigeria has necessitated the exploration of additional indicators that reflect economic activities and socio-economic factors. This research pioneers a comprehensive approach to predicting Nigeria's Gross Domestic Product (GDP) by integrating a wide array of indicators beyond traditional economic metrics. The primary objective is to enhance the prediction accuracy of Nigeria's GDP using a diverse range of socio-economic indicators. Drawing from data spanning 2000 to 2021, the study incorporates variables like healthcare expenditure, net migration rates, population demographics, life expectancy, access to electricity, and internet usage. Utilising machine learning techniques such as Random Forest Regressor, XGBoost Regressor, and Linear Regression, the study rigorously evaluates the efficacy of these algorithms in forecasting GDP. The analysis reveals that all selected indicators have a strong correlation with GDP. Significantly, the Random Forest Regressor emerges as the most robust model, boasting an R2 score of 0.96 and a Mean Absolute Error (MAE) of 24.29. The study underscores that optimising factors like healthcare, internet access, and electricity availability could serve as pivotal levers for accelerating Nigeria's economic growth.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Transfer learning for predicting of gross domestic product growth based on remittance inflows using RNN-LSTM hybrid model: a case study of The Gambia
    Jallow, Haruna
    Mwangi, Ronald Waweru
    Gibba, Alieu
    Imboga, Herbert
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 8
  • [42] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Shawki Saleh
    Bouchaib Cherradi
    Oussama El Gannour
    Soufiane Hamida
    Omar Bouattane
    Multimedia Tools and Applications, 2024, 83 : 33207 - 33234
  • [43] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Saleh, Shawki
    Cherradi, Bouchaib
    El Gannour, Oussama
    Hamida, Soufiane
    Bouattane, Omar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33207 - 33234
  • [44] Predicting EURO Games Using an Ensemble Technique Involving Genetic Algorithms and Machine Learning
    Randrianasolo, Arisoa S.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 470 - 475
  • [45] Predicting protein-membrane interfaces using molecular simulations and ensemble machine learning
    Cournia, Zoe
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 325A - 325A
  • [46] Forecasting Model of Gross Regional Domestic Product (GRDP) Using Backpropagation of Levenberg-Marguardt Method
    Sukono
    Subartin, Betty
    Ambarwati
    Napitupulu, Herlina
    Saputra, Jumadil
    Hidayat, Yuyun
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2019, 18 (03): : 530 - 540
  • [47] Modeling Bangladesh's Gross Domestic Product Using Regression Approach
    Hasan, M. N.
    Rana, Sohel
    Malek, M. B.
    Das, K. R.
    Sultana, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 (02): : 233 - 246
  • [48] Earthquake loss estimation by using Gross Domestic Product and population data
    陈棋福
    陈禺页
    陈凌
    Acta Seismologica Sinica(English Edition), 1997, (06) : 95 - 104
  • [49] Ensemble Machine Learning Model for Classification of Spam Product Reviews
    Fayaz, Muhammad
    Khan, Atif
    Rahman, Javid Ur
    Alharbi, Abdullah
    Uddin, M. Irfan
    Alouffi, Bader
    COMPLEXITY, 2020, 2020
  • [50] Ensemble Machine Learning Classification Models for Predicting Pavement Condition
    Chung, Frederick
    Doyle, Andy
    Robinson, Ernay
    Paik, Yejee
    Li, Mingshu
    Baek, Minsoo
    Moore, Brian
    Ashuri, Baabak
    TRANSPORTATION RESEARCH RECORD, 2024,