Forecasting Model of Gross Regional Domestic Product (GRDP) Using Backpropagation of Levenberg-Marguardt Method

被引:2
|
作者
Sukono [1 ]
Subartin, Betty [1 ]
Ambarwati [1 ]
Napitupulu, Herlina [1 ]
Saputra, Jumadil [2 ]
Hidayat, Yuyun [3 ]
机构
[1] Univ Padjadjaran, Fac Math & Nat Sci, Dept Math, Sumedang, Indonesia
[2] Univ Malaysia Terengganu, Sch Social & Econ Dev, Kuala Nerus, Terengganu, Malaysia
[3] Univ Padjadjaran, Dept Stat, Fac Math & Nat Sci, Sumedang, Indonesia
来源
关键词
Forecasting; Arima Models; Backpropagation of Levenberg-Marquardt Method; NEURAL-NETWORKS;
D O I
10.7232/iems.2019.18.3.530
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The GRDP is an important indicator to measure the economic growth of a region so that the GRDP forecast future needs. This paper intends to choose a better method for forecasting the GRDP of Bandung Regency. The method used in this study is the Autoregressive Integrated Moving Average (ARIMA) time series model and the Backpropagation of Levenberg-Marquardt or Feed Forward Neural Network (FFNN) method. To measure the accuracy of forecasting carried out using Mean Absolute Percentage Error (MAPE). The GRDP data obtained from the Bandung Regency Central Bureau of Statistics, in the years 2010-2016. The results of the analysis using the ARIMA model, obtained ARIMA (0, 1, 1) model, with MAPE of 3.90%. Meanwhile, analysis using Backpropagation of Levenberg-Marquardt obtained FFNN (1, 5, 1) model, with MAPE of 3.88%. Because the MAPE value in the FFNN (1, 5, 1) model is smaller than the MAPE value in the ARIMA (0, 1, 1) model, it can conclude that the Backpropagation of Levenberg-Marquardt method better used in forecasting the GRDP of Bandung Regency.
引用
收藏
页码:530 / 540
页数:11
相关论文
共 30 条
  • [1] Determinant of gross regional domestic product (GRDP) in Yogyakarta special province
    Feriyanto, Nur
    ECONOMIC JOURNAL OF EMERGING MARKETS, 2014, 6 (02) : 131 - 140
  • [2] Backpropagation and Recurrent Neural Networks for Thai exports and gross domestic product forecasting
    Pattamavorakun, Suwat
    Pattamavorakun, Suwarin
    WMSCI 2005: 9TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 7, 2005, : 99 - 104
  • [3] FORECASTING CANCER INCIDENCE USING GROSS DOMESTIC PRODUCT
    Ayodele, O. A.
    Isherwood, A.
    Hughes, M.
    VALUE IN HEALTH, 2014, 17 (07) : A564 - A564
  • [4] Forecasting a State Gross Domestic Product with Logistic Growth Model
    Rahim, Rahela Abdul
    Zikri, Mohd Aliff
    4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [5] Forecasting the gross domestic product using a weight direct determination neural network
    Mourtas, Spyridon D.
    Drakonakis, Emmanouil
    Bragoudakis, Zacharias
    AIMS MATHEMATICS, 2023, 8 (10): : 24254 - 24273
  • [6] Predicting gross domestic product using the ensemble machine learning method
    Adewale, M. D.
    Ebem, D. U.
    Awodele, O.
    Sambo-Magaji, A.
    Aggrey, E. M.
    Okechalu, E. A.
    Donatus, R. E.
    Olayanju, K. A.
    Owolabi, A. F.
    Oju, J. U.
    Ubadike, O. C.
    Otu, G. A.
    Muhammed, U. I.
    Danjuma, O. R.
    Oluyide, O. P.
    SYSTEMS AND SOFT COMPUTING, 2024, 6
  • [7] Estimation of Factors Affecting Gross Regional Domestic Product Using Geographically Weighted Panel Regression (Case Study: Gross Regional Domestic Product in Central Java']Java 2011-2015)
    Djuraidah, A.
    Syafitri, U. D.
    Handayani, L. M. W.
    INTERNATIONAL JOURNAL OF ECOLOGICAL ECONOMICS & STATISTICS, 2019, 40 (01) : 86 - 94
  • [8] A Data-Driven Gross Domestic Product Forecasting Model Based on Multi-Indicator Assessment
    Wu, Xin
    Zhang, Zhenyuan
    Chang, Haotian
    Huang, Qi
    IEEE ACCESS, 2021, 9 : 99495 - 99503
  • [9] Study the influences of the economic environment on the gross domestic product using a fuzzy model
    Ucenic, C. I.
    Atsalakis, G.
    Management of Technological Changes, Book 1, 2003, : 171 - 177
  • [10] Predicting the Gross Domestic Product Using Neural Networks and the Group Method of Data Handling
    Guo, Qiuyan
    He, Yue
    Huang, Yong
    FUZZY SYSTEMS, KNOWLEDGE DISCOVERY AND NATURAL COMPUTATION SYMPOSIUM (FSKDNC 2013), 2013, : 1 - 8