Inductive biases of neural network modularity in spatial navigation

被引:0
|
作者
Zhang, Ruiyi [1 ]
Pitkow, Xaq [2 ,3 ,4 ,5 ,6 ]
Angelaki, Dora E. [1 ,7 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 10012 USA
[2] Carnegie Mellon Univ, Neurosci Inst, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Dept Machine Learning, Pittsburgh, PA USA
[4] Baylor Coll Med, Dept Neurosci, Houston, TX USA
[5] Rice Univ, Dept Elect & Comp Engn, Houston, TX USA
[6] Baylor Coll Med, Ctr Neurosci & Artificial Intelligence, Houston, TX USA
[7] NYU, Ctr Neural Sci, New York, NY USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 29期
基金
美国国家卫生研究院;
关键词
BRAIN; DYNAMICS; BEHAVIOR; TRACKING; ERROR;
D O I
10.1126/sciadv.adk1256
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized modules that match the task structure. We hypothesize that this architecture enables better learning and generalization than architectures with less specialized modules. To test this, we trained reinforcement learning agents with various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture that segregates computations of state representation, value, and action into specialized modules, achieved better learning and generalization. Its learned state representation combines prediction and observation, weighted by their relative uncertainty, akin to recursive Bayesian estimation. This agent's behavior also resembles macaques' behavior more closely. Our results shed light on the possible rationale for the brain's modularity and suggest that artificial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Modularity in neural computing
    Caelli, T
    Guan, L
    Wen, W
    PROCEEDINGS OF THE IEEE, 1999, 87 (09) : 1497 - 1518
  • [42] Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale
    Wolbers, Thomas
    Wiener, Jan M.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8
  • [44] Artificial neural network assisted compact inductive distance sensor
    Kantor, Zoltan
    Polik, Zoltan
    PROCEEDINGS OF THE 30TH ANNIVERSARY EUROSENSORS CONFERENCE - EUROSENSORS 2016, 2016, 168 : 23 - 26
  • [45] Inductive Graph Neural Network for Job-SkillFramework Analysis
    Fabregat, Hermenegildo
    Poves, Rus
    Lacasa, Lucas Alvarez
    Retyk, Federico
    Garcia-Sardina, Laura
    Zbib, Rabih
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2024, (73): : 83 - 94
  • [46] Personalized recommendation via inductive spatiotemporal graph neural network
    Gong, Jibing
    Zhao, Yi
    Zhao, Jinye
    Zhang, Jin
    Ma, Guixiang
    Zheng, Shaojie
    Du, Shuying
    Tang, Jie
    PATTERN RECOGNITION, 2024, 145
  • [47] Inductive Transfer through neural network error and dataset regrouping
    Liu, Wei
    Zhang, Huaxiang
    Li, Jianbo
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 777 - 781
  • [48] OblivGNN: Oblivious Inference on Transductive and Inductive Graph Neural Network
    Xu, Zhibo
    Lai, Shangqi
    Liu, Xiaoning
    Abuadbba, Alsharif
    Yuan, Xingliang
    Yi, Xun
    PROCEEDINGS OF THE 33RD USENIX SECURITY SYMPOSIUM, SECURITY 2024, 2024, : 2209 - 2226
  • [49] Vehicle inductive signatures recognition using a Madaline neural network
    Teixeira de Lima, Glauston R.
    Silva, Jose Demisio S.
    Saotome, Osamu
    NEURAL COMPUTING & APPLICATIONS, 2010, 19 (03): : 421 - 436
  • [50] Vehicle inductive signatures recognition using a Madaline neural network
    Glauston R. Teixeira de Lima
    José Demísio S. Silva
    Osamu Saotome
    Neural Computing and Applications, 2010, 19 : 421 - 436