Inductive biases of neural network modularity in spatial navigation

被引:0
|
作者
Zhang, Ruiyi [1 ]
Pitkow, Xaq [2 ,3 ,4 ,5 ,6 ]
Angelaki, Dora E. [1 ,7 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 10012 USA
[2] Carnegie Mellon Univ, Neurosci Inst, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Dept Machine Learning, Pittsburgh, PA USA
[4] Baylor Coll Med, Dept Neurosci, Houston, TX USA
[5] Rice Univ, Dept Elect & Comp Engn, Houston, TX USA
[6] Baylor Coll Med, Ctr Neurosci & Artificial Intelligence, Houston, TX USA
[7] NYU, Ctr Neural Sci, New York, NY USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 29期
基金
美国国家卫生研究院;
关键词
BRAIN; DYNAMICS; BEHAVIOR; TRACKING; ERROR;
D O I
10.1126/sciadv.adk1256
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized modules that match the task structure. We hypothesize that this architecture enables better learning and generalization than architectures with less specialized modules. To test this, we trained reinforcement learning agents with various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture that segregates computations of state representation, value, and action into specialized modules, achieved better learning and generalization. Its learned state representation combines prediction and observation, weighted by their relative uncertainty, akin to recursive Bayesian estimation. This agent's behavior also resembles macaques' behavior more closely. Our results shed light on the possible rationale for the brain's modularity and suggest that artificial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] NEURAL NETWORK CLASSIFICATION OF INDUCTIVE AND RESONANCE EFFECTS OF SUBSTITUENTS
    KVASNICKA, V
    SKLENAK, S
    POSPICHAL, J
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (04) : 1495 - 1500
  • [32] On the inductive biases of deep domain adaptation
    Siry, Rodrigue
    Hemadou, Louis
    Simon, Loic
    Jurie, Frederic
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 233
  • [33] On the hazards of relating representations and inductive biases
    Quilty-Dunn, Jake
    Porot, Nicolas
    Mandelbaum, Eric
    BEHAVIORAL AND BRAIN SCIENCES, 2023, 46
  • [34] Compositional inductive biases in function learning
    Schulz, Eric
    Tenenbaum, Joshua B.
    Duvenaud, David
    Speekenbrink, Maarten
    Gershman, Samuel J.
    COGNITIVE PSYCHOLOGY, 2017, 99 : 44 - 79
  • [35] Neural network for the behavioral navigation of a mobile robot
    Zalama, E
    Paul, M
    Perán, JR
    INTELLIGENT AUTONOMOUS VECHICLES 1998 (IAV'98), 1998, : 93 - 98
  • [36] MOBILE ROBOT NAVIGATION - A NEURAL NETWORK APPROACH
    SOROUCHYARI, E
    ARTIFICIAL NEURAL NETWORKS : JOURNEES DELECTRONIQUE 1989, 1989, : 159 - 175
  • [37] Synaptic and Network Mechanisms of Serial Biases in Spatial Working Memory
    Compte, Albert
    Barbosa, Joao
    Stein, Heike
    Lozano-Soldevilla, Diego
    Constantinidis, Christos
    PERCEPTION, 2019, 48 : 4 - 4
  • [38] Neural evidence supports a novel framework for spatial navigation
    Chrastil, Elizabeth R.
    PSYCHONOMIC BULLETIN & REVIEW, 2013, 20 (02) : 208 - 227
  • [39] Neural evidence supports a novel framework for spatial navigation
    Elizabeth R. Chrastil
    Psychonomic Bulletin & Review, 2013, 20 : 208 - 227
  • [40] Neural basis of the spatial navigation based on geometric cues
    Pedro Vargas, Juan
    Portavella, Manuel
    Quintero, Esperanza
    Carlos Lopez, Juan
    BEHAVIOURAL BRAIN RESEARCH, 2011, 225 (01) : 367 - 372