Utilizing multispectral imaging for improved weed and crop detection

被引:0
|
作者
Fischer, Benedikt [1 ]
Gauweiler, Pascal [1 ]
Gruna, Robin [1 ]
Beyerer, Juergen [1 ,2 ]
机构
[1] Fraunhofer IOSB, Visual Inspect Syst SPR, Fraunhoferstr 1, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Vis & Fus Lab IES, Adenauerring 4, D-76131 Karlsruhe, Germany
来源
OPTICAL INSTRUMENT SCIENCE, TECHNOLOGY, AND APPLICATIONS III | 2024年 / 13024卷
关键词
Multispectral Imaging; Precision Agriculture; Machine Learning; Object Detection; Weed Control; Vegetation Indices; INDEX;
D O I
10.1117/12.3023597
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conventional agriculture relies heavily on herbicides for weed control. Smart farming, particularly through the use of mechanical weed control systems, has the potential to reduce the herbicide usage and the associated negative impact on our environment. The growing accessibility of multispectral cameras in recent times poses the question if their added expenses justify the potential advantages they offer. In this study we compare the weed and crop detection performance between RGB and multispectral VIS-NIR imaging data. Therefore, we created and annotated a multispectral instance segmentation dataset for sugar beet crop and weed detection. We trained Mask-RCNN models on the RGB images and on images composed of different vegetation indices calculated from the multispectral data. The outcomes are thoroughly analysed and compared across various scenarios. Our findings indicate that the use of vegetation indices can significantly improve the weed detection performance in many situations.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Weed Detection in Soybean Crop Using Deep Neural Network
    Singh, Vinayak
    Gourisaria, Mahendra Kumar
    Harshvardhan, G. M.
    Choudhury, Tanupriya
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (01): : 401 - 423
  • [42] WEED DETECTION IN WHEAT CROP USING UAV for PRECISION AGRICULTURE
    Mateen, Ahmed
    Zhu, Qingsheng
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2019, 56 (03): : 809 - 817
  • [43] Efficient crop segmentation net and novel weed detection method
    Kong, Xiaotong
    Liu, Teng
    Chen, Xin
    Jin, Xiaojun
    Li, Aimin
    Yu, Jialin
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 161
  • [44] Precision nutrient management utilizing UAV multispectral imaging and artificial intelligence
    Ampatzidis, Y.
    Costa, L.
    Albrecht, U.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: III INTERNATIONAL SYMPOSIUM ON MECHANIZATION, PRECISION HORTICULTURE, AND ROBOTICS: PRECISION AND DIGITAL HORTICULTURE IN FIELD ENVIRONMENTS, 2023, 1360 : 321 - 329
  • [45] The ACRE Crop-Weed Dataset for Benchmarking Weed Detection Models on Maize and Beans Fields
    Bertoglio, Riccardo
    Spizzichino, Eli
    Kalouguine, Anne
    Vitali, Giuliano
    Matteucci, Matteo
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 312 - 323
  • [46] Weed detection by analysis of multispectral images acquired under uncontrolled illumination conditions
    Amziane, A.
    Losson, O.
    Mathon, B.
    Macaire, L.
    Dumenil, A.
    FIFTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2021, 11794
  • [47] An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon
    Kalischuk, Melanie
    Paret, Mathews L.
    Freeman, Joshua H.
    Raj, Darren
    Da Silva, Susannah
    Eubanks, Shep
    Wiggins, D. J.
    Lollar, Matthew
    Marois, James J.
    Mellinger, H. Charles
    Das, Jnaneshwar
    PLANT DISEASE, 2019, 103 (07) : 1642 - 1650
  • [48] RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields
    Oscar Barrero
    Sammy A. Perdomo
    Precision Agriculture, 2018, 19 : 809 - 822
  • [49] RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields
    Barrero, Oscar
    Perdomo, Sammy A.
    PRECISION AGRICULTURE, 2018, 19 (05) : 809 - 822
  • [50] A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images
    Osorio, Kavir
    Puerto, Andres
    Pedraza, Cesar
    Jamaica, David
    Rodriguez, Leonardo
    AGRIENGINEERING, 2020, 2 (03): : 471 - 488